test_multiply.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17 18 19 20
import numpy as np

import paddle
import paddle.tensor as tensor
21
from paddle.static import Program, program_guard
22 23


24 25
class TestMultiplyApi(unittest.TestCase):
    def _run_static_graph_case(self, x_data, y_data):
26
        with program_guard(Program(), Program()):
27
            paddle.enable_static()
28 29 30 31 32 33
            x = paddle.static.data(
                name='x', shape=x_data.shape, dtype=x_data.dtype
            )
            y = paddle.static.data(
                name='y', shape=y_data.shape, dtype=y_data.dtype
            )
34
            res = tensor.multiply(x, y)
35

36 37 38 39 40
            place = (
                paddle.CUDAPlace(0)
                if paddle.is_compiled_with_cuda()
                else paddle.CPUPlace()
            )
41
            exe = paddle.static.Executor(place)
42 43 44 45 46
            outs = exe.run(
                paddle.static.default_main_program(),
                feed={'x': x_data, 'y': y_data},
                fetch_list=[res],
            )
47 48 49
            res = outs[0]
            return res

50
    def _run_dynamic_graph_case(self, x_data, y_data):
51
        paddle.disable_static()
52 53
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
54
        res = paddle.multiply(x, y)
55 56
        return res.numpy()

57
    def test_multiply(self):
58
        np.random.seed(7)
59

60 61 62
        # test static computation graph: 1-d array
        x_data = np.random.rand(200)
        y_data = np.random.rand(200)
63
        res = self._run_static_graph_case(x_data, y_data)
64
        np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05)
65

66 67 68
        # test static computation graph: 2-d array
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(2, 500)
69
        res = self._run_static_graph_case(x_data, y_data)
70
        np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05)
71

72 73 74
        # test static computation graph: broadcast
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(500)
75
        res = self._run_static_graph_case(x_data, y_data)
76
        np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05)
77

W
will-jl944 已提交
78 79 80 81
        # test static computation graph: boolean
        x_data = np.random.choice([True, False], size=[200])
        y_data = np.random.choice([True, False], size=[200])
        res = self._run_static_graph_case(x_data, y_data)
82
        np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05)
W
will-jl944 已提交
83

84 85 86
        # test dynamic computation graph: 1-d array
        x_data = np.random.rand(200)
        y_data = np.random.rand(200)
87
        res = self._run_dynamic_graph_case(x_data, y_data)
88
        np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05)
89

90 91 92
        # test dynamic computation graph: 2-d array
        x_data = np.random.rand(20, 50)
        y_data = np.random.rand(20, 50)
93
        res = self._run_dynamic_graph_case(x_data, y_data)
94
        np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05)
95

96 97 98
        # test dynamic computation graph: broadcast
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(500)
99
        res = self._run_dynamic_graph_case(x_data, y_data)
100
        np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05)
101

W
will-jl944 已提交
102 103 104 105
        # test dynamic computation graph: boolean
        x_data = np.random.choice([True, False], size=[200])
        y_data = np.random.choice([True, False], size=[200])
        res = self._run_dynamic_graph_case(x_data, y_data)
106
        np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05)
W
will-jl944 已提交
107

108 109

class TestMultiplyError(unittest.TestCase):
110
    def test_errors(self):
111
        # test static computation graph: dtype can not be int8
112
        paddle.enable_static()
113
        with program_guard(Program(), Program()):
114 115
            x = paddle.static.data(name='x', shape=[100], dtype=np.int8)
            y = paddle.static.data(name='y', shape=[100], dtype=np.int8)
116 117
            self.assertRaises(TypeError, tensor.multiply, x, y)

118
        # test static computation graph: inputs must be broadcastable
119
        with program_guard(Program(), Program()):
120 121
            x = paddle.static.data(name='x', shape=[20, 50], dtype=np.float64)
            y = paddle.static.data(name='y', shape=[20], dtype=np.float64)
122
            self.assertRaises(ValueError, tensor.multiply, x, y)
123 124 125

        np.random.seed(7)
        # test dynamic computation graph: dtype can not be int8
126
        paddle.disable_static()
127 128
        x_data = np.random.randn(200).astype(np.int8)
        y_data = np.random.randn(200).astype(np.int8)
129 130
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
131
        self.assertRaises(RuntimeError, paddle.multiply, x, y)
132 133 134 135

        # test dynamic computation graph: inputs must be broadcastable
        x_data = np.random.rand(200, 5)
        y_data = np.random.rand(200)
136 137
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
138
        self.assertRaises(ValueError, paddle.multiply, x, y)
139

140 141 142 143 144
        # test dynamic computation graph: inputs must be broadcastable(python)
        x_data = np.random.rand(200, 5)
        y_data = np.random.rand(200)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
145
        self.assertRaises(ValueError, paddle.multiply, x, y)
146

147
        # test dynamic computation graph: dtype must be same
148 149 150 151
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
152
        self.assertRaises(ValueError, paddle.multiply, x, y)
153

154 155 156 157
        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        y = paddle.to_tensor(y_data)
158
        self.assertRaises(ValueError, paddle.multiply, x_data, y)
159 160 161 162 163

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
164
        self.assertRaises(ValueError, paddle.multiply, x, y_data)
165 166 167 168 169

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        x = paddle.to_tensor(x_data)
170
        self.assertRaises(ValueError, paddle.multiply, x, y_data)
171 172 173 174 175

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        x = paddle.to_tensor(x_data)
176
        self.assertRaises(ValueError, paddle.multiply, x_data, y)
177 178 179 180

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
181
        self.assertRaises(ValueError, paddle.multiply, x_data, y_data)
182

183 184 185

if __name__ == '__main__':
    unittest.main()