# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.tensor as tensor from paddle.static import Program, program_guard class TestMultiplyApi(unittest.TestCase): def _run_static_graph_case(self, x_data, y_data): with program_guard(Program(), Program()): paddle.enable_static() x = paddle.static.data( name='x', shape=x_data.shape, dtype=x_data.dtype ) y = paddle.static.data( name='y', shape=y_data.shape, dtype=y_data.dtype ) res = tensor.multiply(x, y) place = ( paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace() ) exe = paddle.static.Executor(place) outs = exe.run( paddle.static.default_main_program(), feed={'x': x_data, 'y': y_data}, fetch_list=[res], ) res = outs[0] return res def _run_dynamic_graph_case(self, x_data, y_data): paddle.disable_static() x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) res = paddle.multiply(x, y) return res.numpy() def test_multiply(self): np.random.seed(7) # test static computation graph: 1-d array x_data = np.random.rand(200) y_data = np.random.rand(200) res = self._run_static_graph_case(x_data, y_data) np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05) # test static computation graph: 2-d array x_data = np.random.rand(2, 500) y_data = np.random.rand(2, 500) res = self._run_static_graph_case(x_data, y_data) np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05) # test static computation graph: broadcast x_data = np.random.rand(2, 500) y_data = np.random.rand(500) res = self._run_static_graph_case(x_data, y_data) np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05) # test static computation graph: boolean x_data = np.random.choice([True, False], size=[200]) y_data = np.random.choice([True, False], size=[200]) res = self._run_static_graph_case(x_data, y_data) np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05) # test dynamic computation graph: 1-d array x_data = np.random.rand(200) y_data = np.random.rand(200) res = self._run_dynamic_graph_case(x_data, y_data) np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05) # test dynamic computation graph: 2-d array x_data = np.random.rand(20, 50) y_data = np.random.rand(20, 50) res = self._run_dynamic_graph_case(x_data, y_data) np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05) # test dynamic computation graph: broadcast x_data = np.random.rand(2, 500) y_data = np.random.rand(500) res = self._run_dynamic_graph_case(x_data, y_data) np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05) # test dynamic computation graph: boolean x_data = np.random.choice([True, False], size=[200]) y_data = np.random.choice([True, False], size=[200]) res = self._run_dynamic_graph_case(x_data, y_data) np.testing.assert_allclose(res, np.multiply(x_data, y_data), rtol=1e-05) class TestMultiplyError(unittest.TestCase): def test_errors(self): # test static computation graph: dtype can not be int8 paddle.enable_static() with program_guard(Program(), Program()): x = paddle.static.data(name='x', shape=[100], dtype=np.int8) y = paddle.static.data(name='y', shape=[100], dtype=np.int8) self.assertRaises(TypeError, tensor.multiply, x, y) # test static computation graph: inputs must be broadcastable with program_guard(Program(), Program()): x = paddle.static.data(name='x', shape=[20, 50], dtype=np.float64) y = paddle.static.data(name='y', shape=[20], dtype=np.float64) self.assertRaises(ValueError, tensor.multiply, x, y) np.random.seed(7) # test dynamic computation graph: dtype can not be int8 paddle.disable_static() x_data = np.random.randn(200).astype(np.int8) y_data = np.random.randn(200).astype(np.int8) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) self.assertRaises(RuntimeError, paddle.multiply, x, y) # test dynamic computation graph: inputs must be broadcastable x_data = np.random.rand(200, 5) y_data = np.random.rand(200) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) self.assertRaises(ValueError, paddle.multiply, x, y) # test dynamic computation graph: inputs must be broadcastable(python) x_data = np.random.rand(200, 5) y_data = np.random.rand(200) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) self.assertRaises(ValueError, paddle.multiply, x, y) # test dynamic computation graph: dtype must be same x_data = np.random.randn(200).astype(np.int64) y_data = np.random.randn(200).astype(np.float64) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) self.assertRaises(ValueError, paddle.multiply, x, y) # test dynamic computation graph: dtype must be Tensor type x_data = np.random.randn(200).astype(np.int64) y_data = np.random.randn(200).astype(np.float64) y = paddle.to_tensor(y_data) self.assertRaises(ValueError, paddle.multiply, x_data, y) # test dynamic computation graph: dtype must be Tensor type x_data = np.random.randn(200).astype(np.int64) y_data = np.random.randn(200).astype(np.float64) x = paddle.to_tensor(x_data) self.assertRaises(ValueError, paddle.multiply, x, y_data) # test dynamic computation graph: dtype must be Tensor type x_data = np.random.randn(200).astype(np.float32) y_data = np.random.randn(200).astype(np.float32) x = paddle.to_tensor(x_data) self.assertRaises(ValueError, paddle.multiply, x, y_data) # test dynamic computation graph: dtype must be Tensor type x_data = np.random.randn(200).astype(np.float32) y_data = np.random.randn(200).astype(np.float32) x = paddle.to_tensor(x_data) self.assertRaises(ValueError, paddle.multiply, x_data, y) # test dynamic computation graph: dtype must be Tensor type x_data = np.random.randn(200).astype(np.float32) y_data = np.random.randn(200).astype(np.float32) self.assertRaises(ValueError, paddle.multiply, x_data, y_data) if __name__ == '__main__': unittest.main()