test_meshgrid_op.py 8.6 KB
Newer Older
S
suytingwan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

S
suytingwan 已提交
17
import numpy as np
18
from op_test import OpTest
19

S
suytingwan 已提交
20
import paddle
21
import paddle.fluid as fluid
S
suytingwan 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


class TestMeshgridOp(OpTest):
    def setUp(self):
        self.op_type = "meshgrid"
        self.dtype = self.get_dtype()
        ins, outs = self.init_test_data()
        self.inputs = {'X': [('x%d' % i, ins[i]) for i in range(len(ins))]}
        self.outputs = {
            'Out': [('out%d' % i, outs[i]) for i in range(len(outs))]
        }

    def get_dtype(self):
        return "float64"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], ['out0'])
        self.check_grad(['x1'], ['out1'])

    def init_test_data(self):
        self.shape = self.get_x_shape()
        ins = []
        outs = []
        for i in range(len(self.shape)):
49
            ins.append(np.random.random((self.shape[i],)).astype(self.dtype))
S
suytingwan 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

        for i in range(len(self.shape)):
            out_reshape = [1] * len(self.shape)
            out_reshape[i] = self.shape[i]
            out_temp = np.reshape(ins[i], out_reshape)
            outs.append(np.broadcast_to(out_temp, self.shape))
        return ins, outs

    def get_x_shape(self):
        return [100, 200]


class TestMeshgridOp2(TestMeshgridOp):
    def get_x_shape(self):
        return [100, 300]


class TestMeshgridOp3(unittest.TestCase):
    def test_api(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

72 73 74 75 76 77 78 79 80
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
81
            100,
82 83 84 85
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
86 87 88 89 90 91 92

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
93
        grid_x, grid_y = paddle.tensor.meshgrid(x, y)
94 95 96 97 98
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
S
suytingwan 已提交
99 100 101 102 103
        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp4(unittest.TestCase):
104 105 106
    def test_list_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')
S
suytingwan 已提交
107

108 109 110 111 112 113 114 115 116
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
117
            100,
118 119 120 121
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
122

123 124 125 126 127 128 129
        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid([x, y])
130 131 132 133 134
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
135 136 137

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)
S
suytingwan 已提交
138 139 140


class TestMeshgridOp5(unittest.TestCase):
141 142 143 144
    def test_tuple_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

145 146 147 148 149 150 151 152 153
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
154
            100,
155 156 157 158
            [
                200,
            ],
        ).astype('int32')
159 160 161 162 163 164 165 166

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid((x, y))
167 168 169 170 171
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
172 173 174 175 176 177

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp6(unittest.TestCase):
S
suytingwan 已提交
178
    def test_api_with_dygraph(self):
179 180 181 182 183 184 185 186 187
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
188
            100,
189 190 191 192
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
193

194 195 196 197 198 199 200 201 202 203 204
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid(tensor_3, tensor_4)

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])


class TestMeshgridOp7(unittest.TestCase):
    def test_api_with_dygraph_list_input(self):
205 206 207 208 209 210 211 212 213
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
214
            100,
215 216 217 218
            [
                200,
            ],
        ).astype('int32')
219

S
suytingwan 已提交
220 221 222 223 224 225 226 227 228
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid([tensor_3, tensor_4])

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])


Z
zhangchunle 已提交
229
class TestMeshgridOp8(unittest.TestCase):
230
    def test_api_with_dygraph_tuple_input(self):
231 232 233 234 235 236 237 238 239
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
240
            100,
241 242 243 244
            [
                200,
            ],
        ).astype('int32')
245 246 247 248 249 250 251 252 253

        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid((tensor_3, tensor_4))

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
254 255

class TestMeshgridEager(unittest.TestCase):
256
    def test_dygraph_api(self):
257 258 259 260 261 262 263 264 265
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
266
            100,
267 268 269 270
            [
                200,
            ],
        ).astype('int32')
Y
YuanRisheng 已提交
271 272 273 274 275 276 277 278 279

        with fluid.dygraph.guard():
            tensor_1 = fluid.dygraph.to_variable(input_1)
            tensor_2 = fluid.dygraph.to_variable(input_2)
            tensor_1.stop_gradient = False
            tensor_2.stop_gradient = False
            res_1, res_2 = paddle.tensor.meshgrid((tensor_1, tensor_2))
            sum = paddle.add_n([res_1, res_2])
            sum.backward()
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            tensor_eager_1 = fluid.dygraph.to_variable(input_1)
            tensor_eager_2 = fluid.dygraph.to_variable(input_2)
            tensor_eager_1.stop_gradient = False
            tensor_eager_2.stop_gradient = False
            res_eager_1, res_eager_2 = paddle.tensor.meshgrid(
                (tensor_eager_1, tensor_eager_2)
            )
            sum_eager = paddle.add_n([res_eager_1, res_eager_2])
            sum_eager.backward()
            self.assertEqual(
                (tensor_1.grad.numpy() == tensor_eager_1.grad.numpy()).all(),
                True,
            )
            self.assertEqual(
                (tensor_2.grad.numpy() == tensor_eager_2.grad.numpy()).all(),
                True,
            )
Y
YuanRisheng 已提交
297

298

S
suytingwan 已提交
299
if __name__ == '__main__':
H
hong 已提交
300
    paddle.enable_static()
S
suytingwan 已提交
301
    unittest.main()