test_meshgrid_op.py 9.2 KB
Newer Older
S
suytingwan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17
from op_test import OpTest
S
suytingwan 已提交
18 19
import paddle.fluid as fluid
import paddle
Y
YuanRisheng 已提交
20
from paddle.fluid.framework import _test_eager_guard
S
suytingwan 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class TestMeshgridOp(OpTest):
    def setUp(self):
        self.op_type = "meshgrid"
        self.dtype = self.get_dtype()
        ins, outs = self.init_test_data()
        self.inputs = {'X': [('x%d' % i, ins[i]) for i in range(len(ins))]}
        self.outputs = {
            'Out': [('out%d' % i, outs[i]) for i in range(len(outs))]
        }

    def get_dtype(self):
        return "float64"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], ['out0'])
        self.check_grad(['x1'], ['out1'])

    def init_test_data(self):
        self.shape = self.get_x_shape()
        ins = []
        outs = []
        for i in range(len(self.shape)):
48
            ins.append(np.random.random((self.shape[i],)).astype(self.dtype))
S
suytingwan 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

        for i in range(len(self.shape)):
            out_reshape = [1] * len(self.shape)
            out_reshape[i] = self.shape[i]
            out_temp = np.reshape(ins[i], out_reshape)
            outs.append(np.broadcast_to(out_temp, self.shape))
        return ins, outs

    def get_x_shape(self):
        return [100, 200]


class TestMeshgridOp2(TestMeshgridOp):
    def get_x_shape(self):
        return [100, 300]


class TestMeshgridOp3(unittest.TestCase):
    def test_api(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

71 72 73 74 75 76 77 78 79
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
80
            100,
81 82 83 84
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
85 86 87 88 89 90 91

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
92
        grid_x, grid_y = paddle.tensor.meshgrid(x, y)
93 94 95 96 97
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
S
suytingwan 已提交
98 99 100 101 102
        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp4(unittest.TestCase):
103 104 105
    def test_list_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')
S
suytingwan 已提交
106

107 108 109 110 111 112 113 114 115
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
116
            100,
117 118 119 120
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
121

122 123 124 125 126 127 128
        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid([x, y])
129 130 131 132 133
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
134 135 136

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)
S
suytingwan 已提交
137 138 139


class TestMeshgridOp5(unittest.TestCase):
140 141 142 143
    def test_tuple_input(self):
        x = fluid.data(shape=[100], dtype='int32', name='x')
        y = fluid.data(shape=[200], dtype='int32', name='y')

144 145 146 147 148 149 150 151 152
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
153
            100,
154 155 156 157
            [
                200,
            ],
        ).astype('int32')
158 159 160 161 162 163 164 165

        out_1 = np.reshape(input_1, [100, 1])
        out_1 = np.broadcast_to(out_1, [100, 200])
        out_2 = np.reshape(input_2, [1, 200])
        out_2 = np.broadcast_to(out_2, [100, 200])

        exe = fluid.Executor(place=fluid.CPUPlace())
        grid_x, grid_y = paddle.tensor.meshgrid((x, y))
166 167 168 169 170
        res_1, res_2 = exe.run(
            fluid.default_main_program(),
            feed={'x': input_1, 'y': input_2},
            fetch_list=[grid_x, grid_y],
        )
171 172 173 174 175 176

        assert np.array_equal(res_1, out_1)
        assert np.array_equal(res_2, out_2)


class TestMeshgridOp6(unittest.TestCase):
S
suytingwan 已提交
177
    def test_api_with_dygraph(self):
178 179 180 181 182 183 184 185 186
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
187
            100,
188 189 190 191
            [
                200,
            ],
        ).astype('int32')
S
suytingwan 已提交
192

193 194 195 196 197 198 199 200
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid(tensor_3, tensor_4)

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
201 202 203 204
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph()

205 206 207

class TestMeshgridOp7(unittest.TestCase):
    def test_api_with_dygraph_list_input(self):
208 209 210 211 212 213 214 215 216
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
217
            100,
218 219 220 221
            [
                200,
            ],
        ).astype('int32')
222

S
suytingwan 已提交
223 224 225 226 227 228 229 230
        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid([tensor_3, tensor_4])

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
231 232 233 234
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph_list_input()

S
suytingwan 已提交
235

Z
zhangchunle 已提交
236
class TestMeshgridOp8(unittest.TestCase):
237
    def test_api_with_dygraph_tuple_input(self):
238 239 240 241 242 243 244 245 246
        input_3 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_4 = np.random.randint(
            0,
247
            100,
248 249 250 251
            [
                200,
            ],
        ).astype('int32')
252 253 254 255 256 257 258 259 260

        with fluid.dygraph.guard():
            tensor_3 = fluid.dygraph.to_variable(input_3)
            tensor_4 = fluid.dygraph.to_variable(input_4)
            res_3, res_4 = paddle.tensor.meshgrid((tensor_3, tensor_4))

            assert np.array_equal(res_3.shape, [100, 200])
            assert np.array_equal(res_4.shape, [100, 200])

Y
YuanRisheng 已提交
261 262 263 264 265 266
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_api_with_dygraph_tuple_input()


class TestMeshgridEager(unittest.TestCase):
267
    def test_dygraph_api(self):
268 269 270 271 272 273 274 275 276
        input_1 = np.random.randint(
            0,
            100,
            [
                100,
            ],
        ).astype('int32')
        input_2 = np.random.randint(
            0,
277
            100,
278 279 280 281
            [
                200,
            ],
        ).astype('int32')
Y
YuanRisheng 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

        with fluid.dygraph.guard():
            tensor_1 = fluid.dygraph.to_variable(input_1)
            tensor_2 = fluid.dygraph.to_variable(input_2)
            tensor_1.stop_gradient = False
            tensor_2.stop_gradient = False
            res_1, res_2 = paddle.tensor.meshgrid((tensor_1, tensor_2))
            sum = paddle.add_n([res_1, res_2])
            sum.backward()
            with _test_eager_guard():
                tensor_eager_1 = fluid.dygraph.to_variable(input_1)
                tensor_eager_2 = fluid.dygraph.to_variable(input_2)
                tensor_eager_1.stop_gradient = False
                tensor_eager_2.stop_gradient = False
                res_eager_1, res_eager_2 = paddle.tensor.meshgrid(
297 298
                    (tensor_eager_1, tensor_eager_2)
                )
Y
YuanRisheng 已提交
299 300
                sum_eager = paddle.add_n([res_eager_1, res_eager_2])
                sum_eager.backward()
301 302 303 304 305 306 307 308 309 310 311 312
                self.assertEqual(
                    (
                        tensor_1.grad.numpy() == tensor_eager_1.grad.numpy()
                    ).all(),
                    True,
                )
                self.assertEqual(
                    (
                        tensor_2.grad.numpy() == tensor_eager_2.grad.numpy()
                    ).all(),
                    True,
                )
Y
YuanRisheng 已提交
313

314

S
suytingwan 已提交
315
if __name__ == '__main__':
H
hong 已提交
316
    paddle.enable_static()
S
suytingwan 已提交
317
    unittest.main()