io.py 40.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
import pickle
import warnings
21
import sys
W
WeiXin 已提交
22
import numpy as np
T
tianshuo78520a 已提交
23
import copyreg
24 25 26 27 28
import paddle

# deprecated module import
from paddle import fluid
from paddle.fluid import core
29 30
from paddle.fluid.io import _unpack_saved_dict, _pack_loaded_dict, _pickle_loads_mac
from paddle.fluid.io import _legacy_save as _legacy_static_save
31
from paddle.fluid.io import _open_file_buffer, _is_file_path, _is_memory_buffer
32

J
Jiabin Yang 已提交
33
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer, _non_static_mode, ParamBase, EagerParamBase, _current_expected_place, Program
34 35 36
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
37 38 39 40
try:
    from collections.abc import Iterable
except:
    from collections import Iterable
41

42 43
__all__ = []

44 45 46 47 48

def _build_saved_state_dict(state_dict):
    save_dict = {}
    name_table = {}
    for key, value in state_dict.items():
49
        if isinstance(value, (Variable, core.VarBase, core.eager.Tensor)):
S
Steffy-zxf 已提交
50 51 52
            if value.type == core.VarDesc.VarType.VOCAB:
                save_dict[key] = value.value().get_map_tensor()
            else:
B
Baibaifan 已提交
53 54 55 56
                if not value.value().get_tensor()._is_initialized():
                    raise ValueError(
                        "The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model."
                    )
S
Steffy-zxf 已提交
57
                save_dict[key] = value.numpy()
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
            name_table[key] = value.name
        else:
            save_dict[key] = value
    save_dict["StructuredToParameterName@@"] = name_table

    return save_dict


def _load_state_dict_from_save_inference_model(model_path, config):
    # 1. load program desc & construct _ProgramHolder
    programs = _construct_program_holders(model_path, config.model_filename)

    # 2. load layer parameters & buffers
    with fluid.dygraph.guard():
        persistable_var_dict = _construct_params_and_buffers(
73
            model_path, programs, config.params_filename, append_suffix=False)
74 75 76 77 78 79

        # 3. construct state_dict
        load_param_dict = dict()
        for var_name in persistable_var_dict:
            load_param_dict[var_name] = persistable_var_dict[var_name].numpy()

80 81 82
        # if *.info exists, we can recover structured_name
        var_info_filename = str(config.params_filename) + ".info"
        var_info_path = os.path.join(model_path, var_info_filename)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        if os.path.exists(var_info_path):
            with open(var_info_path, 'rb') as f:
                extra_var_info = pickle.load(f)
            structured_para_dict = dict()
            for var_name in load_param_dict:
                structured_name = extra_var_info[var_name].get(
                    'structured_name', None)
                assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                structured_para_dict[structured_name] = load_param_dict[
                    var_name]
            load_param_dict = structured_para_dict

    return load_param_dict


def _load_state_dict_from_save_params(model_path):
    # Try to load all the files in the directory in VarBase format, 
    # the file name is used as the name of VarBase
    load_var_list = []

    # 1. load file names
    var_name_list = []
    for root, _, files in os.walk(model_path):
        for filename in files:
            file_path = os.path.join(root, filename)
            tmp_var_name = os.path.relpath(file_path, model_path)
            var_name = tmp_var_name.replace("\\", "/")
            var_name_list.append(var_name)

    # 2. create and load VarBase
    with fluid.dygraph.guard():
        for name in var_name_list:
            new_var = _varbase_creator(name=name, persistable=True)
            _dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, name)})
            load_var_list.append(new_var)

    # 3. construct state_dict
    load_param_dict = dict()
    for var in load_var_list:
        load_param_dict[var.name] = var.numpy()

    return load_param_dict


131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
# NOTE(chenweihang): [ Handling of use cases of API paddle.load ]
# `paddle.load` may be used to load saved results of:
# 1. Expected cases:
#   - need [full filename] when loading
#       - paddle.save
#       - paddle.static.save
#       - paddle.fluid.save_dygraph
#   - need [prefix] when loading [compatible for paddle 2.x]
#       - paddle.jit.save
#       - paddle.static.save_inference_model
#   - need [directory] when loading [compatible for paddle 1.x]
#       - paddle.fluid.io.save_inference_model
#       - paddle.fluid.io.save_params/save_persistable
# 2. Error cases:
#   - no error case
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        error_msg = "The ``path`` (%s) to load model not exists."
        # if current path is a prefix, and the path.pdparams or path.pdopt
        # is exist, users may want use `paddle.load` load the result of 
        # `fluid.save_dygraph`, we raise error here for users
        params_file_path = path + ".pdparams"
        opti_file_path = path + ".pdopt"
        if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
            error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
                "please specify the full file name, not just the file name prefix. For " \
                "example, it should be written as `paddle.load('model.pdparams')` instead of " \
                "`paddle.load('model')`."
        raise ValueError(error_msg % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path

    return model_path, config


def _parse_load_config(configs):
194 195 196
    supported_configs = [
        'model_filename', 'params_filename', 'keep_name_table', 'return_numpy'
    ]
197 198 199 200 201 202 203 204 205 206 207 208 209

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.load` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
210
    inner_config.return_numpy = configs.get('return_numpy', False)
211 212 213 214

    return inner_config


215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
def _parse_save_config(configs):
    supported_configs = ['use_binary_format', 'pickle_protocol']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.save` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.use_binary_format = configs.get('use_binary_format', False)
    inner_config.pickle_protocol = configs.get('pickle_protocol', None)

    return inner_config


def _pickle_save(obj, f, protocol):
    # TODO(weixin):add support for BytesIO.
    if not isinstance(protocol, int):
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
            type(protocol)))

    if protocol < 2 or protocol > 4:
        raise ValueError("Expected 1<'protocol'<5, but received protocol={}".
                         format(protocol))

243
    def reduce_varbase(self):
244 245 246 247 248 249 250 251 252 253
        data = self.numpy()
        name = self.name

        return (tuple, ((name, data), ))

    def reduce_LoDTensor(self):
        data = np.array(self)

        return (eval, ('data', {'data': data}))

254
    def reduce_Layer(self):
255 256
        raise ValueError(
            "paddle do not support saving `paddle.nn.Layer` object.")
257 258 259 260 261 262 263

    dispatch_table_layer = dict()

    def create_layer_dispatch_table(layer):
        dispatch_table_layer[layer.__class__] = reduce_Layer
        return layer

J
Jiabin Yang 已提交
264
    _parse_every_object(obj, lambda v: isinstance(v, fluid.Layer),
265 266
                        create_layer_dispatch_table)

267 268
    def add_dispatch_table():
        # This is not a good method, because the pickle module has been modified.
269 270
        pickle.dispatch_table[core.VarBase] = reduce_varbase
        pickle.dispatch_table[ParamBase] = reduce_varbase
271 272
        pickle.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickle.dispatch_table[EagerParamBase] = reduce_varbase
273
        pickle.dispatch_table[core.LoDTensor] = reduce_LoDTensor
274
        pickle.dispatch_table.update(dispatch_table_layer)
275 276 277 278 279

    def pop_dispatch_table():
        pickle.dispatch_table.pop(core.VarBase)
        pickle.dispatch_table.pop(core.LoDTensor)
        pickle.dispatch_table.pop(ParamBase)
280 281
        pickle.dispatch_table.pop(core.eager.Tensor)
        pickle.dispatch_table.pop(EagerParamBase)
282 283
        for k in dispatch_table_layer:
            pickle.dispatch_table.pop(k)
284 285 286 287 288 289 290 291 292 293 294

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        add_dispatch_table()
        pickle_bytes = pickle.dumps(obj)
        pop_dispatch_table()

        max_bytes = 2**30
        for i in range(0, len(pickle_bytes), max_bytes):
            f.write(pickle_bytes[i:i + max_bytes])
    else:
T
tianshuo78520a 已提交
295 296
        pickler = pickle.Pickler(f, protocol)
        pickler.dispatch_table = copyreg.dispatch_table.copy()
297

T
tianshuo78520a 已提交
298 299 300
        pickler.dispatch_table[core.VarBase] = reduce_varbase
        pickler.dispatch_table[core.LoDTensor] = reduce_LoDTensor
        pickler.dispatch_table[ParamBase] = reduce_varbase
301 302
        pickler.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickler.dispatch_table[EagerParamBase] = reduce_varbase
T
tianshuo78520a 已提交
303 304
        pickler.dispatch_table.update(dispatch_table_layer)
        pickler.dump(obj)
305 306


307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
def _contain_x(obj, condition_func):
    if isinstance(obj, core.SelectedRows):
        raise NotImplementedError(
            "`paddle.save` do not support saving 'SelectedRows'.")

    if condition_func(obj):
        return True
    elif type(obj) in (dict, collections.OrderedDict, list, tuple):
        if type(obj) in (dict, collections.OrderedDict):
            keys = list(obj.keys())
        else:
            keys = range(len(obj))
        flag = False
        for key in keys:
            flag |= _contain_x(obj[key], condition_func)
            if flag:
                return True
        return flag
    else:
326
        return False
327 328 329 330 331 332


def _is_state_dict(obj):
    if isinstance(obj, dict):

        def condition(obj):
J
Jiabin Yang 已提交
333
            return isinstance(obj, (fluid.Layer, Program, core.VarBase,
334 335
                                    core.eager.Tensor, core.LoDTensor,
                                    core.SelectedRows))
336 337 338 339 340 341 342 343 344

        # If the value of a dict is a core.VarBase/LoDTensor or a dict 
        # that does not contain a paddle type(Layer, Program, VarBase, LoDTensor, SelectedRows), 
        # the dict is considered to be a state_ dict.
        for key, value in obj.items():
            if isinstance(value, dict):
                for k, v in value.items():
                    if _contain_x(v, condition):
                        return False
345 346
            elif not isinstance(value, (core.VarBase, core.eager.Tensor,
                                        core.LoDTensor)):
347 348 349 350
                return False
        return True

    return False
351 352 353 354 355 356


def _transformed_from_varbase(obj):
    # In paddle2.1 version, VarBase is saved as tuple(tensor.name, tensor.numpy()).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, tuple) and len(obj) == 2:
T
tianshuo78520a 已提交
357
        name_types = str
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        if isinstance(obj[0], name_types) and isinstance(obj[1], np.ndarray):
            return True
    return False


def _transformed_from_lodtensor(obj):
    # In paddle2.1 version, LoDTensor is saved as np.array(tensor).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, np.ndarray):
        return True
    return False


def _to_LodTensor(ndarray):
    if not isinstance(ndarray, np.ndarray):
        raise TypeError(
            'Type of `ndarray` should be numpy.ndarray, but received {}.'.
            format(type(ndarray)))
    t = core.LoDTensor()
    place = _current_expected_place()
    t.set(ndarray, place)
    return t


def _tuple_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj[1]
J
Jiabin Yang 已提交
385
    if _non_static_mode():
386 387 388 389 390 391 392 393 394 395 396 397
        t = paddle.to_tensor(obj[1])
        # This function does modify the name of return value.
        # Loading the same variable multiple times may cause the same name.
        t.name = obj[0]
        return t
    else:
        return _to_LodTensor(obj[1])


def _ndarray_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj
J
Jiabin Yang 已提交
398
    if _non_static_mode():
399 400 401 402 403
        return paddle.to_tensor(obj)
    else:
        return _to_LodTensor(obj)


404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
def _lod_tensor2varbase(tensor):
    return_var = _varbase_creator()
    return_var.value().get_tensor().set(tensor, _current_expected_place())
    return return_var


def _parse_every_object(obj, condition_func, convert_func):
    if condition_func(obj):
        return convert_func(obj)
    elif type(obj) in (dict, collections.OrderedDict, list):
        if type(obj) == list:
            keys = range(len(obj))
        else:
            keys = list(obj.keys())
        for key in keys:
            if condition_func(obj[key]):
                obj[key] = convert_func(obj[key])
            else:
                obj[key] = _parse_every_object(obj[key], condition_func,
                                               convert_func)
        return obj
    elif type(obj) == tuple:
        return tuple(
            _parse_every_object(list(obj), condition_func, convert_func))
    elif type(obj) == set:
        return set(_parse_every_object(list(obj), condition_func, convert_func))
    else:
431
        if isinstance(obj, Iterable) and not isinstance(
432 433
                obj,
            (str, np.ndarray, core.VarBase, core.eager.Tensor, core.LoDTensor)):
434 435 436 437 438 439 440 441
            raise NotImplementedError(
                "The iteratable objects supported are tuple, list, dict, OrderedDict, string. But received {}.".
                format(type(obj)))
        return obj


def _parse_load_result(obj, return_numpy):
    def is_layer(obj):
J
Jiabin Yang 已提交
442
        return isinstance(obj, fluid.Layer)
443 444 445 446 447 448 449

    def parse_layer(obj):
        temp_dict = _parse_load_result(obj.__dict__, False)
        obj.__dict__.update(temp_dict)
        return obj

    if _contain_x(obj, is_layer):
J
Jiabin Yang 已提交
450
        if not _non_static_mode():
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
            raise ValueError(
                "Layer can only be loaded in dynamic graph mode, but now in static graph mode."
            )

        _parse_every_object(obj, is_layer, parse_layer)

    def tuple_to_tensor(obj):
        return _tuple_to_tensor(obj, return_numpy=return_numpy)

    def ndarray_to_tensor(obj):
        return _ndarray_to_tensor(obj, return_numpy=return_numpy)

    # tuple(name, ndarry) was converted from varbase of paddle2.1, 
    # and all tuple(name, ndarry) are converted to tensor.
    if _contain_x(obj, _transformed_from_varbase):
        return _parse_every_object(obj, _transformed_from_varbase,
                                   tuple_to_tensor)
    # If there is no tuple(name, ndary), it is considered to be saved by paddle2.0 
    # or converted from LoDTensor, and all ndarrays are converted to tensor.
    else:
        return _parse_every_object(obj, _transformed_from_lodtensor,
                                   ndarray_to_tensor)


475 476
def _save_lod_tensor(tensor, file_name):
    if not tensor._is_initialized():
B
Baibaifan 已提交
477 478 479
        raise ValueError(
            "The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model firstly."
        )
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    if _is_file_path(file_name):
        _seek = core.save_lod_tensor(tensor, file_name)
        # '_seek' is the end position of this tensor in the file.

    elif _is_memory_buffer(file_name):
        tensor_bytes = core.save_lod_tensor_to_memory(tensor)

        with _open_file_buffer(file_name, 'wb') as f:
            f.write(tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports saving objects to file or BytesIO, but received {}'.
            format(type(file_name)))
495 496 497 498 499
    return _seek


def _load_lod_tensor(file_name):
    temp_t = paddle.fluid.core.LoDTensor()
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    if _is_file_path(file_name):
        # '_seek' is the end position of this tensor in the file.
        _seek = paddle.fluid.core.load_lod_tensor(temp_t, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            tensor_bytes = f.read()
            paddle.fluid.core.load_lod_tensor_from_memory(temp_t, tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports load objects from file or BytesIO, but received {}'.
            format(type(file_name)))

515 516 517 518 519 520
    return temp_t, _seek


def _save_selected_rows(selected_rows, file_name):
    if not selected_rows.get_tensor()._is_initialized():
        raise ValueError("The saved tensor is not initialized.")
521 522 523 524 525 526 527 528 529 530 531 532 533
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.save_selected_rows(selected_rows, file_name)

    elif _is_memory_buffer(file_name):
        selected_rows_bytes = core.save_selected_rows_to_memory(selected_rows)
        with _open_file_buffer(file_name, 'wb') as f:
            f.write(selected_rows_bytes)
            _seek = f.tell()
    else:
        raise NotImplementedError(
            'Only supports saving objects to file or BytesIO, but received {}'.
            format(type(file_name)))
534 535 536 537 538
    return _seek


def _load_selected_rows(file_name):
    temp_sr = core.SelectedRows()
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.load_selected_rows(temp_sr, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            selected_rows_bytes = f.read()
            paddle.fluid.core.load_selected_rows_from_memory(
                temp_sr, selected_rows_bytes)
        _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports load objects from file or BytesIO, but received {}'.
            format(type(file_name)))

555 556 557 558 559 560 561 562
    return temp_sr, _seek


def _save_binary_var(obj, path):
    if isinstance(obj, core.LoDTensor):
        _save_lod_tensor(obj, path)
    elif isinstance(obj, core.SelectedRows):
        _save_selected_rows(obj, path)
563
    elif isinstance(obj, (core.VarBase, core.eager.Tensor)):
564
        _save_lod_tensor(obj.value().get_tensor(), path)
565 566 567 568 569 570 571
    else:
        # Since the concept of 'Tensor' is only exposed to users, the error message can only contain tensor instead of 'LoDTensor' or 'SelectedRows'
        raise NotImplementedError(
            "When use_binary_format = True, `paddle.save`  expected Tensor, but received {}.".
            format(type(obj)))


572
def save(obj, path, protocol=4, **configs):
573 574 575 576
    '''
    Save an object to the specified path.
    
    .. note::
577
        Now supports saving ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
578 579

    .. note::
580 581 582 583 584 585 586
        Different from ``paddle.jit.save``, since the save result of ``paddle.save`` is a single file, 
        there is no need to distinguish multiple saved files by adding a suffix. The argument ``path`` 
        of ``paddle.save`` will be directly used as the saved file name instead of a prefix. 
        In order to unify the saved file name format, we recommend using the paddle standard suffix:
        1. for ``Layer.state_dict`` , recommend to use ``.pdparams`` ; 
        2. for ``Optimizer.state_dict`` , recommend to use ``.pdopt`` . 
        For specific examples, please refer to API code examples.
587 588 589
    
    Args:
        obj(Object) : The object to be saved.
590
        path(str|BytesIO) : The path/buffer of the object to be saved. 
591
          If saved in the current directory, the input path string will be used as the file name. 
592
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
593
                                 Default: 4
594 595 596 597
        **configs(dict, optional): optional keyword arguments. The following options are currently supported:
          use_binary_format(bool): When the saved object is static graph variable, you can specify ``use_binary_for_var``. 
          If True, save the file in the c++ binary format when saving a single static graph variable; otherwise, save it in pickle format.
          Default: False
598 599 600 601 602 603 604

    Returns:
        None

    Examples:
        .. code-block:: python

605
            # example 1: dynamic graph
606 607 608
            import paddle
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
609 610

            # save state_dict of emb
611
            paddle.save(layer_state_dict, "emb.pdparams")
612 613

            scheduler = paddle.optimizer.lr.NoamDecay(
614 615 616 617 618
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
619 620

            # save state_dict of optimizer
621
            paddle.save(opt_state_dict, "adam.pdopt")
622 623 624
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")

W
WeiXin 已提交
625 626 627 628 629 630 631 632 633 634 635 636
            # example 2: Save multiple state_dict at the same time
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)


            # example 3: static graph
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
652
                    tensor = var.get_value()
653 654 655 656 657 658 659 660 661
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
W
WeiXin 已提交
662 663 664 665 666 667 668 669 670 671 672 673

            # example 4: save program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
674

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
    
    '''
    if _is_file_path(path):
        # 1. input check
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
                "filename is empty string.")

        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)
    elif not _is_memory_buffer(path):
        raise ValueError(
            "only supports saving objects to file and `BytesIO`, but got {}".
            format(type(path)))
707 708 709 710 711 712 713 714

    config = _parse_save_config(configs)

    if not isinstance(config.use_binary_format, bool):
        raise TypeError(
            "Type of `use_binary_format` should be bool, but received {}.".
            format(type(config.use_binary_format)))

715 716
    if config.use_binary_format:
        _save_binary_var(obj, path)
717
    else:
718 719 720 721 722 723
        # `protocol` need to be used, `pickle_protocol` is a deprecated arg.
        if config.pickle_protocol is not None:
            protocol = config.pickle_protocol
            warnings.warn(
                "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
            )
724

725 726
        if isinstance(obj, Program):
            obj.desc.flush()
727
            with _open_file_buffer(path, "wb") as f:
728
                f.write(obj.desc.serialize_to_string())
729 730

        elif _is_state_dict(obj):
J
Jiabin Yang 已提交
731
            if _non_static_mode():
732 733 734 735
                _legacy_save(obj, path, protocol)
            else:
                _legacy_static_save(obj, path, protocol)
        else:
736
            with _open_file_buffer(path, 'wb') as f:
737
                _pickle_save(obj, f, protocol)
738

739 740

def _legacy_save(obj, path, protocol=2):
741 742 743 744 745 746 747 748 749
    # 1. input check
    if not isinstance(obj, dict):
        raise NotImplementedError(
            "Now only supports save state_dict of Layer or Optimizer, "
            "expect dict, but received %s." % type(obj))

    if len(obj) == 0:
        warnings.warn("The input state dict is empty, no need to save.")

750
    if not isinstance(protocol, int):
W
WeiXin 已提交
751
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
752
            type(protocol)))
W
WeiXin 已提交
753

754
    if protocol < 2 or protocol > 4:
W
WeiXin 已提交
755
        raise ValueError("Expected 1<'protocol'<5, but received protocol={}".
756
                         format(protocol))
W
WeiXin 已提交
757

758 759 760 761 762 763 764 765 766 767 768
    if _is_file_path(path):
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
                "filename is empty string.")
        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)
769

W
WeiXin 已提交
770 771 772
    if isinstance(obj, dict):
        saved_obj = _build_saved_state_dict(obj)

773
    saved_obj = _unpack_saved_dict(saved_obj, protocol)
774

775
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
776 777
    if _is_file_path(
            path) and sys.platform == 'darwin' and sys.version_info.major == 3:
778
        pickle_bytes = pickle.dumps(saved_obj, protocol=protocol)
779 780 781 782 783
        with open(path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
784
        with _open_file_buffer(path, 'wb') as f:
785
            pickle.dump(saved_obj, f, protocol=protocol)
786 787


788
def load(path, **configs):
789 790 791 792
    '''
    Load an object can be used in paddle from specified path.

    .. note::
793
        Now supports loading ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
794 795

    .. note::
796 797 798 799
        In order to use the model parameters saved by paddle more efficiently, 
        ``paddle.load`` supports loading ``state_dict`` of Layer from the result of 
        other save APIs except ``paddle.save`` , but the argument ``path`` format is 
        different:
800 801 802 803 804 805 806 807 808 809 810 811
        1. loading from ``paddle.static.save`` or ``paddle.Model().save(training=True)`` ,  
        ``path`` needs to be a complete file name, such as ``model.pdparams`` or 
        ``model.pdopt`` ; 
        2. loading from ``paddle.jit.save`` or ``paddle.static.save_inference_model`` 
        or ``paddle.Model().save(training=False)`` , ``path`` need to be a file prefix, 
        such as ``model/mnist``, and ``paddle.load`` will get information from 
        ``mnist.pdmodel`` and ``mnist.pdiparams`` ;
        3. loading from paddle 1.x APIs ``paddle.fluid.io.save_inference_model`` or 
        ``paddle.fluid.io.save_params/save_persistables`` , ``path`` need to be a 
        directory, such as ``model`` and model is a directory.

    .. note::
812
        If you load ``state_dict`` from the saved result of static mode API such as 
813
        ``paddle.static.save`` or ``paddle.static.save_inference_model`` , 
814 815 816
        the structured variable name in dynamic mode will cannot be restored. 
        You need to set the argument ``use_structured_name=False`` when using 
        ``Layer.set_state_dict`` later.
817 818

    Args:
819
        path(str|BytesIO) : The path/buffer to load the target object. Generally, the path is the target 
820 821
            file path. When loading state_dict from the saved result of the API used to save 
            the inference model, the path may be a file prefix or directory.
822 823 824 825
        **configs (dict, optional): other load configuration options for compatibility. We do not 
            recommend using these configurations, they may be removed in the future. If not necessary, 
            DO NOT use them. Default None.
            The following options are currently supported:
826
            (1) model_filename (str): The inference model file name of the paddle 1.x 
827
            ``save_inference_model`` save format. Default file name is :code:`__model__` . 
828
            (2) params_filename (str): The persistable variables file name of the paddle 1.x 
829
            ``save_inference_model`` save format. No default file name, save variables separately 
830 831 832
            by default.            
            (3) return_numpy(bool): If specified as True, return tensor as numpy.ndarray, otherwise return tensor as paddle.Tensor. 
            Default False.
833 834 835 836 837 838 839

    Returns:
        Object(Object): a target object can be used in paddle

    Examples:
        .. code-block:: python

840 841
            # example 1: dynamic graph
            import paddle
842 843
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
844 845

            # save state_dict of emb
846
            paddle.save(layer_state_dict, "emb.pdparams")
847 848

            scheduler = paddle.optimizer.lr.NoamDecay(
849 850 851 852 853
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
854 855

            # save state_dict of optimizer
856
            paddle.save(opt_state_dict, "adam.pdopt")
857 858
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")
859

860
            # load state_dict of emb
861
            load_layer_state_dict = paddle.load("emb.pdparams")
862
            # load state_dict of optimizer
863
            load_opt_state_dict = paddle.load("adam.pdopt")
864 865 866 867
            # load weight of emb
            load_weight = paddle.load("emb.weight.pdtensor")


W
WeiXin 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880
            # example 2: Load multiple state_dict at the same time
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)
            obj_load = paddle.load(path)


            # example 3: static graph
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
896
                    tensor = var.get_value()
897 898 899 900 901 902 903 904 905 906 907 908
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)
            load_tensor = paddle.load(path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
            load_state_dict = paddle.load(path_tensor)

W
WeiXin 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

            # example 4: load program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
            load_main = paddle.load(path)
            print(load_main)


925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
            byio.seek(0)
            # load state_dict
            dict_load = paddle.load(byio)

941
    '''
942

943
    if _is_memory_buffer(path) or os.path.isfile(path):
944
        config = _parse_load_config(configs)
T
tianshuo78520a 已提交
945
        exception_type = pickle.UnpicklingError
W
WeiXin 已提交
946
        try:
947
            with _open_file_buffer(path, 'rb') as f:
W
WeiXin 已提交
948
                # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
949 950 951
                if _is_file_path(
                        path
                ) and sys.platform == 'darwin' and sys.version_info.major == 3:
W
WeiXin 已提交
952 953
                    load_result = _pickle_loads_mac(path, f)
                else:
T
tianshuo78520a 已提交
954
                    load_result = pickle.load(f, encoding='latin1')
955

W
WeiXin 已提交
956 957
                # TODO(weixin):If `obj` is any object, the judgment condition should be more precise.
                if isinstance(load_result, dict):
958
                    load_result = _pack_loaded_dict(load_result)
W
WeiXin 已提交
959 960 961 962
                    # paddle2.0: paddle.save/load
                    if "StructuredToParameterName@@" in load_result:

                        for key in load_result["StructuredToParameterName@@"]:
S
Steffy-zxf 已提交
963 964 965
                            if isinstance(load_result[key], np.ndarray):
                                load_result[key] = _ndarray_to_tensor(
                                    load_result[key], config.return_numpy)
W
WeiXin 已提交
966 967 968 969 970

                        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
                            del load_result["StructuredToParameterName@@"]
                    else:
                        # paddle2.1 static.save/load
971 972
                        load_result = _parse_load_result(load_result,
                                                         config.return_numpy)
973 974

                else:
975 976
                    load_result = _parse_load_result(load_result,
                                                     config.return_numpy)
977 978 979 980 981 982 983 984

        except exception_type as msg_pickle:
            try:
                tensor, _ = _load_selected_rows(path)
                return tensor
            except:
                try:
                    tensor, _ = _load_lod_tensor(path)
985 986 987
                    if config.return_numpy:
                        return np.array(tensor)
                    else:
J
Jiabin Yang 已提交
988
                        if _non_static_mode():
989 990
                            return _lod_tensor2varbase(tensor)
                        return tensor
991 992
                except:
                    try:
993
                        with _open_file_buffer(path, "rb") as f:
994 995 996 997 998 999 1000 1001
                            program_desc_str = f.read()
                            program = Program.parse_from_string(
                                program_desc_str)
                            return program
                    except:
                        raise ValueError(
                            "`paddle.load` can not parse the file:{}.".format(
                                path))
1002 1003 1004 1005 1006 1007 1008 1009

    else:
        load_result = _legacy_load(path, **configs)

    return load_result


def _legacy_load(path, **configs):
1010
    load_result = None
1011 1012
    config = _parse_load_config(configs)

1013
    if os.path.isfile(path) or _is_memory_buffer(path):
1014
        # we think path is file means this file is created by paddle.save
1015
        with _open_file_buffer(path, 'rb') as f:
T
tianshuo78520a 已提交
1016
            load_result = pickle.load(f, encoding='latin1')
1017
        load_result = _pack_loaded_dict(load_result)
1018 1019
        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
            del load_result["StructuredToParameterName@@"]
1020 1021 1022
    else:
        # file prefix and directory are compatible cases
        model_path, config = _build_load_path_and_config(path, config)
1023 1024 1025 1026 1027
        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
1028
        model_file_path = os.path.join(model_path, model_filename)
1029 1030 1031 1032 1033 1034 1035 1036 1037

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 
1038
            load_result = _load_state_dict_from_save_inference_model(model_path,
1039 1040 1041 1042 1043 1044 1045 1046
                                                                     config)
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.static.load_program_state in this case
1047
            load_result = _load_state_dict_from_save_params(model_path)
1048 1049

    return load_result