Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f40ed5f4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f40ed5f4
编写于
3月 09, 2022
作者:
B
Baibaifan
提交者:
GitHub
3月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add_sharding_api (#40129)
上级
1defc8f3
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
437 addition
and
24 deletion
+437
-24
python/paddle/distributed/__init__.py
python/paddle/distributed/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
...optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
+2
-4
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage2.py
...stributed/fleet/meta_parallel/sharding/sharding_stage2.py
+8
-11
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage3.py
...stributed/fleet/meta_parallel/sharding/sharding_stage3.py
+5
-4
python/paddle/distributed/sharding/__init__.py
python/paddle/distributed/sharding/__init__.py
+17
-0
python/paddle/distributed/sharding/group_sharded.py
python/paddle/distributed/sharding/group_sharded.py
+211
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/dygraph_group_sharded_api.py
...paddle/fluid/tests/unittests/dygraph_group_sharded_api.py
+147
-0
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
...n/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
+4
-4
python/paddle/fluid/tests/unittests/test_dygraph_group_sharded_api.py
...e/fluid/tests/unittests/test_dygraph_group_sharded_api.py
+31
-0
python/paddle/framework/io.py
python/paddle/framework/io.py
+7
-1
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
python/paddle/distributed/__init__.py
浏览文件 @
f40ed5f4
...
...
@@ -55,6 +55,7 @@ from paddle.fluid.dygraph.parallel import ParallelEnv # noqa: F401
from
.
import
cloud_utils
# noqa: F401
from
.
import
utils
# noqa: F401
from
.sharding
import
*
# noqa: F401
__all__
=
[
# noqa
"spawn"
,
...
...
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
浏览文件 @
f40ed5f4
...
...
@@ -40,8 +40,6 @@ align = {
Type
.
fp32
.
value
:
4
,
}
__all__
=
[
"ShardingOptimizerStage2"
]
class
ShardingOptimizerStage2
(
Optimizer
):
"""
...
...
@@ -136,7 +134,7 @@ class ShardingOptimizerStage2(Optimizer):
# Update optimizer parameters and adjust parameter storage and use according to rank.
self
.
_update_opt_status
()
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
_sync_params_and_buffers
(
self
):
"""
Sync all model states for all ranks
...
...
@@ -392,7 +390,7 @@ class ShardingOptimizerStage2(Optimizer):
self
.
_dtype_rank_params
.
clear
()
self
.
_param2rank
.
clear
()
@
fluid
.
dygraph
.
no_grad
@
paddle
.
autograd
.
no_grad
()
def
_broadcast_params
(
self
):
"""Broadcast the parameters of the current rank to each rank"""
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage2.py
浏览文件 @
f40ed5f4
...
...
@@ -63,8 +63,7 @@ class ShardingStage2(nn.Layer):
sync_buffers
=
False
,
buffer_max_size
=
2
**
23
,
#8MB
auto_refresh_trainable
=
True
,
device
=
"gpu"
,
use_grad_storage
=
True
):
device
=
"gpu"
):
super
().
__init__
()
# training options
...
...
@@ -102,9 +101,10 @@ class ShardingStage2(nn.Layer):
# Set grad storage size & Display param sizes and model sizes
model_size
=
sum
(
[
np
.
prod
(
p
.
shape
)
for
p
in
self
.
_layer
.
parameters
()]).
item
()
assert
buffer_max_size
>=
0
,
"buffer_max_size must be GE than 0."
self
.
_buffer_max_size
=
self
.
_rank_buffer_size
(
buffer_max_size
,
model_size
)
self
.
_use_grad_storage
=
use_grad_storage
self
.
_use_grad_storage
=
buffer_max_size
>
0
self
.
_grad_storages
=
{}
# {dtype: {rank: GradStorage}}
self
.
_has_grad_storage
=
[]
self
.
_grad_storage_list
=
[]
...
...
@@ -255,7 +255,7 @@ class ShardingStage2(nn.Layer):
# wait next func hook support
self
.
_setup_backward_hooks
()
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
__sync_buffers
(
self
):
"""
Sync all the param buffers from all ranks (exp: batch norm statistics).
...
...
@@ -277,7 +277,7 @@ class ShardingStage2(nn.Layer):
except
AttributeError
:
return
getattr
(
self
.
_layer
,
name
)
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
_clear_counters
(
self
):
"""Reset all the grad reduce and call counters."""
if
self
.
training
:
...
...
@@ -290,13 +290,13 @@ class ShardingStage2(nn.Layer):
def
_get_reduce_fn
(
self
,
index
,
param
,
dst_rank
):
"""
There are two ways to reduce gradient.
- 1. Do not use use_grad_storage or exceeded buffer_max_size will be reduced separately.
- 1. Do not use
self._
use_grad_storage or exceeded buffer_max_size will be reduced separately.
- 2. Use grad_storage Reduce the storage to get the full gradient from different ranks.
"""
if
not
self
.
_use_grad_storage
or
not
self
.
_has_grad_storage
[
index
]:
# Direct reduction
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
reduce
(
*
_
):
# Skip gradient reduction, do not change status information
if
self
.
_grad_reduced
[
index
]:
...
...
@@ -336,7 +336,7 @@ class ShardingStage2(nn.Layer):
else
:
# Buffer reduction
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
reduce
(
*
_
):
# Skip gradient reduction, do not change status information
if
self
.
_grad_reduced
[
index
]:
...
...
@@ -421,9 +421,6 @@ class ShardingStage2(nn.Layer):
Integrate the parameters gradient into a continuous memory according to rank, and support the update of training parameters.
"""
if
not
self
.
_use_grad_storage
:
return
# According to parameters's numel sort, allocate memory of parameter gradient to continuous memory according to rank
self
.
_grad_storages
=
{}
self
.
_has_grad_storage
=
[
False
for
_
in
self
.
_trainable_params
]
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage3.py
浏览文件 @
f40ed5f4
...
...
@@ -84,6 +84,7 @@ class ShardingStage3(nn.Layer):
self
.
_offload
=
offload
self
.
_sync_comm
=
sync_comm
# segmentation size
assert
segment_size
>=
0
,
"segment_size must be GE than 0."
self
.
_segment_size
=
segment_size
global
DEV
...
...
@@ -158,7 +159,7 @@ class ShardingStage3(nn.Layer):
self
.
_redefine_opt_step
()
self
.
_redefine_opt_clear
()
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
_sync_params_and_buffers
(
self
):
"""
Sync all model states for all ranks
...
...
@@ -408,7 +409,7 @@ class ShardingStage3(nn.Layer):
# register post forward hooks
sub_layer
.
register_forward_post_hook
(
_forward_post_hook
)
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
_sync_buffers
(
self
):
"""
Sync all the param buffers from all ranks (exp: batch norm statistics).
...
...
@@ -521,7 +522,7 @@ class ShardingStage3(nn.Layer):
param
.
_register_backward_hook
(
allreduce_function
)
def
_get_allreduce_fn
(
self
,
param
):
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
reduce
(
*
_
):
if
param
.
name
in
self
.
_task_flow
.
full_grad
.
keys
():
full_grad
=
self
.
_task_flow
.
full_grad
[
param
.
name
]
...
...
@@ -840,7 +841,7 @@ def _allgather_buffer(trainable_params,
return
task_flow
@
paddle
.
no_grad
()
@
paddle
.
autograd
.
no_grad
()
def
_create_params_grad
(
trainable_params
,
param2buffer_size
,
task_flow
):
for
param
in
trainable_params
:
if
param
.
name
in
task_flow
.
full_grad
.
keys
():
...
...
python/paddle/distributed/sharding/__init__.py
0 → 100644
浏览文件 @
f40ed5f4
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.group_sharded
import
group_sharded_parallel
,
save_group_sharded_model
# noqa: F401
__all__
=
[
'group_sharded_parallel'
,
'save_group_sharded_model'
]
python/paddle/distributed/sharding/group_sharded.py
0 → 100644
浏览文件 @
f40ed5f4
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
logging
from
enum
import
Enum
import
paddle
from
paddle.optimizer
import
Optimizer
from
paddle.distributed.utils
import
get_logger
from
paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2
import
ShardingOptimizerStage2
from
paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2
import
ShardingStage2
from
paddle.distributed.fleet.meta_parallel.sharding.sharding_stage3
import
ShardingStage3
from
paddle.distributed.fleet.meta_parallel.sharding.sharding_utils
import
ShardingScaler
logger_
=
get_logger
(
logging
.
INFO
)
def
group_sharded_parallel
(
model
,
optimizer
,
level
,
scaler
=
None
,
group
=
None
,
offload
=
False
,
sync_buffers
=
False
,
buffer_max_size
=
2
**
23
,
segment_size
=
2
**
20
,
sync_comm
=
False
):
"""
Use this module to configure and wrap up the parameters of the group shared module.
Args:
model (Layer): The layer to be wrapped with group_sharded_parallel.
optimizer (Optimizer): The optimizer to be wrapped with group_sharded_parallel.
level (str): The different level of the group sharded. Such as `os`, `os_g`, `p_g_os`.
scaler (GradScaler, optional): The scaler to be wrapped with group_sharded_parallel. Defaults to None.
group (Group, optional): The group instance. Defaults to None.d
offload (bool, optional): Whether to perform optimizer state and gradient transfer CPU. Defaults to False.
sync_buffers (bool, optional): Whether to broadcast model buffers. Defaults to False.
buffer_max_size (int, optional): The max size of the buffer used to integrate gradient in `os_g`. Defaults to 2**23.
segment_size (int, optional): The smallest size of parameter to be sharded in `p_g_os`. Defaults to 2**20.
sync_comm (bool, optional): Whether to use synchronous communication, only in `p_g_os` used. Defaults to False.
Returns:
model: A wrapper for group sharded given model.
optimizer: A wrapper for group sharded given optimizer.
scaler: A wrapper for group sharded given scaler.
Examples:
.. code-block:: python
# required: distributed
import paddle
from paddle.fluid.dygraph.nn import Linear
from paddle.distributed import fleet
from paddle.distributed.sharding import group_sharded_parallel
fleet.init(is_collective=True)
group = paddle.distributed.new_group([0, 1])
model = Linear(1000, 1000)
clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip)
# wrap sharding model, optimizer and scaler
model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler)
img, label = data
label.stop_gradient = True
img.stop_gradient = True
out = model(img)
loss = paddle.nn.functional.cross_entropy(input=out, label=label)
loss.backward()
optimizer.step()
optimizer.clear_grad()
"""
# check optition type
assert
isinstance
(
model
,
paddle
.
nn
.
Layer
),
"The model must be the instance of paddle.nn.Layer."
assert
isinstance
(
optimizer
,
Optimizer
),
"The optimizer must be the instance of paddle.optimizer.Optimizer."
assert
level
in
[
'os'
,
'os_g'
,
'p_g_os'
],
"The level must be os, os_g or p_g_os."
def
check_dtype
(
param
):
return
param
.
dtype
==
paddle
.
float16
params_fp16
=
filter
(
check_dtype
,
model
.
parameters
())
if
scaler
is
None
and
len
(
params_fp16
)
>
0
:
raise
ValueError
(
"Please enter the correct scaler."
)
# convert model/optimizer/scaler
if
level
in
[
'os'
,
'os_g'
]:
logger_
.
info
(
"*"
*
30
)
logger_
.
info
(
"Sharded level os uses sharded level os_g achieved now."
)
logger_
.
info
(
"*"
*
30
)
optimizer
=
ShardingOptimizerStage2
(
params
=
model
.
parameters
(),
optim
=
optimizer
,
group
=
group
,
offload
=
offload
)
model
=
ShardingStage2
(
model
,
optimizer
,
group
=
group
,
sync_buffers
=
sync_buffers
,
buffer_max_size
=
buffer_max_size
)
elif
level
==
'p_g_os'
:
model
=
ShardingStage3
(
model
,
optimizer
=
optimizer
,
group
=
group
,
sync_buffers
=
sync_buffers
,
segment_size
=
segment_size
,
offload
=
offload
,
sync_comm
=
sync_comm
)
else
:
raise
ValueError
(
"Please enter the correct level."
)
if
params_fp16
and
isinstance
(
scaler
,
paddle
.
amp
.
GradScaler
):
scaler
=
ShardingScaler
(
scaler
)
logger_
.
info
(
"*"
*
30
)
logger_
.
info
(
"If there is a communication hang using group sharded, please check whether the communication operations of each process are unified."
)
logger_
.
info
(
"*"
*
30
)
return
model
,
optimizer
,
scaler
def
save_group_sharded_model
(
model
,
output
,
optimizer
=
None
):
"""
Group sharded encapsulated model and optimizer state saving module.
Args:
model (Layer): A wrapper for group sharded given model.
output (str): Save directory.
optimizer (Optimizer, optional): Group sharded encapsulated optimizer. Defaults to None.
Examples:
.. code-block:: python
# required: distributed
import paddle
from paddle.fluid.dygraph.nn import Linear
from paddle.distributed import fleet
from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model
fleet.init(is_collective=True)
group = paddle.distributed.new_group([0, 1])
model = Linear(1000, 1000)
clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip)
# wrap sharding model, optimizer and scaler
model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler)
img, label = data
label.stop_gradient = True
img.stop_gradient = True
out = model(img)
loss = paddle.nn.functional.cross_entropy(input=out, label=label)
loss.backward()
optimizer.step()
optimizer.clear_grad()
# save model and optimizer state_dict
save_group_sharded_model(model, optimizer,output=output_dir)
"""
logger_
.
info
(
"==========Begin to save group sharded model and optimizer=========="
)
assert
not
os
.
path
.
isfile
(
output
),
"Saving directory ({}) should be a directory, not a file"
.
format
(
output
)
os
.
makedirs
(
output
,
exist_ok
=
True
)
output_model
=
os
.
path
.
join
(
output
,
"model.pdmodel"
)
if
isinstance
(
model
,
ShardingStage2
):
paddle
.
save
(
model
.
_layer
.
state_dict
(),
output_model
)
elif
isinstance
(
model
,
ShardingStage3
):
convert2cpu
=
True
if
model
.
_offload
else
False
model
.
get_all_parameters
(
convert2cpu
=
convert2cpu
)
paddle
.
save
(
model
.
_layer
.
state_dict
(),
output_model
)
else
:
raise
ValueError
(
"Please use the layer which is wrapped with group_sharded_parallel."
)
if
optimizer
is
not
None
:
assert
hasattr
(
optimizer
,
"_optim"
),
"Please use the optimizer which is wrapped with group_sharded_parallel."
output_opt
=
os
.
path
.
join
(
output
,
"model.pdopt"
)
paddle
.
save
(
optimizer
.
_optim
.
state_dict
(),
output_opt
)
logger_
.
info
(
"==========End to save group sharded model and optimizer=========="
)
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
f40ed5f4
...
...
@@ -47,6 +47,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_sharding_parallel)
list
(
APPEND DIST_TEST_OPS test_dygraph_sharding_optimizer_stage2
)
list
(
APPEND DIST_TEST_OPS test_dygraph_sharding_stage2
)
list
(
APPEND DIST_TEST_OPS test_dygraph_sharding_stage3
)
list
(
APPEND DIST_TEST_OPS test_dygraph_group_sharded_api
)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_parallelizer
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_mp_layers
)
list
(
APPEND DIST_TEST_OPS test_hybrid_parallel_inference_helper
)
...
...
@@ -282,6 +283,7 @@ if ((NOT WITH_GPU) AND (NOT WITH_ROCM))
list
(
REMOVE_ITEM TEST_OPS test_dygraph_sharding_optimizer_stage2
)
list
(
REMOVE_ITEM TEST_OPS test_dygraph_sharding_stage2
)
list
(
REMOVE_ITEM TEST_OPS test_dygraph_sharding_stage3
)
list
(
REMOVE_ITEM TEST_OPS test_dygraph_group_sharded_api
)
list
(
REMOVE_ITEM TEST_OPS test_auto_parallel_parallelizer
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_mp_layers
)
LIST
(
REMOVE_ITEM TEST_OPS test_imperative_auto_mixed_precision
)
...
...
@@ -1123,6 +1125,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL)
set_tests_properties
(
test_dygraph_sharding_optimizer_stage2 PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_dygraph_sharding_stage2 PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_dygraph_sharding_stage3 PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_dygraph_group_sharded_api PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_auto_parallel_parallelizer PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_dygraph_mp_layers PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_hybrid_parallel_inference_helper PROPERTIES TIMEOUT 120
)
...
...
python/paddle/fluid/tests/unittests/dygraph_group_sharded_api.py
0 → 100644
浏览文件 @
f40ed5f4
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
time
import
shutil
import
tempfile
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.distributed
import
fleet
from
paddle.fluid.dygraph
import
nn
from
paddle.distributed.sharding
import
group_sharded_parallel
,
save_group_sharded_model
epoch
=
10
paddle
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
base_lr
=
0.1
momentum_rate
=
0.9
l2_decay
=
1e-4
batch_size
=
100
fleet
.
init
(
is_collective
=
True
)
class
MLP
(
fluid
.
Layer
):
def
__init__
(
self
,
linear_size
=
1000
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MLP
,
self
).
__init__
()
self
.
_linear1
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear2
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear3
=
Linear
(
linear_size
,
10
)
def
forward
(
self
,
inputs
):
y
=
self
.
_linear1
(
inputs
)
y
=
self
.
_linear2
(
y
)
y
=
self
.
_linear3
(
y
)
return
y
def
reader_decorator
(
linear_size
=
1000
):
def
__reader__
():
for
_
in
range
(
100
):
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
clip
=
paddle
.
nn
.
ClipGradByGlobalNorm
(
clip_norm
=
1.0
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
parameters
=
[{
"params"
:
list
(
model
.
parameters
())
}]
if
opt_group
else
list
(
model
.
parameters
()),
learning_rate
=
0.001
,
weight_decay
=
0.00001
,
grad_clip
=
clip
,
multi_precision
=
use_pure_fp16
)
return
optimizer
def
train_mlp
(
model
,
shard_level
,
use_pure_fp16
,
output_dir
):
group
=
paddle
.
distributed
.
new_group
([
0
,
1
])
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
32768
)
model
,
optimizer
,
scaler
=
group_sharded_parallel
(
model
=
model
,
optimizer
=
optimizer
,
level
=
shard_level
,
scaler
=
scaler
)
train_reader
=
paddle
.
batch
(
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
32
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
)
train_loader
.
set_sample_list_generator
(
train_reader
)
for
eop
in
range
(
epoch
):
model
.
train
()
for
batch_id
,
data
in
enumerate
(
train_loader
()):
img
,
label
=
data
label
.
stop_gradient
=
True
img
.
stop_gradient
=
True
with
paddle
.
amp
.
auto_cast
(
True
,
level
=
'O2'
):
out
=
model
(
img
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
not
use_pure_fp16
:
avg_loss
.
backward
()
optimizer
.
step
()
else
:
scaler
.
scale
(
avg_loss
).
backward
()
scaler
.
step
(
optimizer
)
scaler
.
update
()
optimizer
.
clear_grad
()
save_group_sharded_model
(
model
,
output
=
output_dir
,
optimizer
=
optimizer
)
return
model
.
parameters
()
def
test_sharding_api
():
mlp
,
mlp1
,
mlp2
=
MLP
(),
MLP
(),
MLP
()
state_dict
=
mlp
.
state_dict
()
mlp1
.
set_state_dict
(
state_dict
)
mlp2
.
set_state_dict
(
state_dict
)
output_dir
=
tempfile
.
mkdtemp
()
# fp16
stage2_params
=
train_mlp
(
mlp1
,
shard_level
=
"os_g"
,
use_pure_fp16
=
True
,
output_dir
=
output_dir
)
stage3_params
=
train_mlp
(
mlp2
,
shard_level
=
"p_g_os"
,
use_pure_fp16
=
True
,
output_dir
=
output_dir
)
for
i
in
range
(
len
(
stage3_params
)):
np
.
testing
.
assert_allclose
(
stage2_params
[
i
].
numpy
(),
stage3_params
[
i
].
numpy
(),
rtol
=
1e-4
,
atol
=
1e-3
)
shutil
.
rmtree
(
output_dir
)
if
__name__
==
'__main__'
:
test_sharding_api
()
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
浏览文件 @
f40ed5f4
...
...
@@ -83,7 +83,7 @@ def train_mlp(model,
accumulate_grad
=
False
,
batch_size
=
100
,
opt_group
=
False
,
recompute
=
False
,
sync_comm
=
False
,
test_minimize
=
False
):
group
=
paddle
.
distributed
.
new_group
([
0
,
1
])
if
opt_group
:
...
...
@@ -104,7 +104,7 @@ def train_mlp(model,
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
elif
sharding_stage
==
3
:
model
=
ShardingStage3
(
model
,
optimizer
=
optimizer
,
group
=
group
,
sync_comm
=
recompute
)
model
,
optimizer
=
optimizer
,
group
=
group
,
sync_comm
=
sync_comm
)
# check optimizer.minimize() error
if
test_minimize
:
...
...
@@ -225,7 +225,7 @@ def test_stage2_stage3():
rtol
=
1e-4
,
atol
=
1e-3
)
# fp16
recompute
# fp16
sync_comm
stage3_params
=
train_mlp
(
mlp7
,
sharding_stage
=
3
,
use_pure_fp16
=
True
,
opt_group
=
False
)
stage3_params_re
=
train_mlp
(
...
...
@@ -233,7 +233,7 @@ def test_stage2_stage3():
sharding_stage
=
3
,
use_pure_fp16
=
True
,
opt_group
=
False
,
recompute
=
True
)
sync_comm
=
True
)
for
i
in
range
(
len
(
stage3_params
)):
np
.
testing
.
assert_allclose
(
stage3_params
[
i
].
numpy
(),
stage3_params_re
[
i
].
numpy
(),
rtol
=
1e-6
)
...
...
python/paddle/fluid/tests/unittests/test_dygraph_group_sharded_api.py
0 → 100644
浏览文件 @
f40ed5f4
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
test_parallel_dygraph_dataparallel
import
TestMultipleGpus
class
TestDygraphGroupSharded
(
TestMultipleGpus
):
# check group sharded logic as well as the accuracy with single mode
def
test_dygraph_group_sharded
(
self
):
self
.
run_mnist_2gpu
(
'dygraph_group_sharded_api.py'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/framework/io.py
浏览文件 @
f40ed5f4
...
...
@@ -46,6 +46,10 @@ def _build_saved_state_dict(state_dict):
if
value
.
type
==
core
.
VarDesc
.
VarType
.
VOCAB
:
save_dict
[
key
]
=
value
.
value
().
get_map_tensor
()
else
:
if
not
value
.
value
().
get_tensor
().
_is_initialized
():
raise
ValueError
(
"The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model."
)
save_dict
[
key
]
=
value
.
numpy
()
name_table
[
key
]
=
value
.
name
else
:
...
...
@@ -466,7 +470,9 @@ def _parse_load_result(obj, return_numpy):
def
_save_lod_tensor
(
tensor
,
file_name
):
if
not
tensor
.
_is_initialized
():
raise
ValueError
(
"The saved tensor is not initialized."
)
raise
ValueError
(
"The saved tensor is not initialized. If you used group sharded, please use save_group_sharded_model firstly."
)
if
_is_file_path
(
file_name
):
_seek
=
core
.
save_lod_tensor
(
tensor
,
file_name
)
# '_seek' is the end position of this tensor in the file.
...
...
python/setup.py.in
浏览文件 @
f40ed5f4
...
...
@@ -280,6 +280,7 @@ packages=['paddle',
'paddle.incubate.nn',
'paddle.incubate.passes',
'paddle.distribution',
'paddle.distributed.sharding',
'paddle.distributed.fleet',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.elastic',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录