norm.py 53.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

28
# TODO: define normalization api
29

Z
zhiboniu 已提交
30 31
from ...fluid.dygraph import BatchNorm  # noqa: F401
from ...fluid.dygraph import SpectralNorm  # noqa: F401
C
ceci3 已提交
32

33
from ...framework import get_default_dtype
C
ceci3 已提交
34

Z
zhiboniu 已提交
35 36
from ..initializer import Constant
from ...framework import ParamAttr
37
from ...fluid.data_feeder import check_variable_and_dtype
Z
zhiboniu 已提交
38
from ...fluid import dygraph_utils
39 40 41 42 43 44

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
Z
zhiboniu 已提交
45
from ...framework import no_grad
46
from .. import functional as F
47
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
48
from .. import Layer
Z
zhiboniu 已提交
49
from paddle import in_dynamic_mode
50
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
51

52 53
__all__ = []

C
ceci3 已提交
54

Z
zhiboniu 已提交
55
class _InstanceNormBase(Layer):
56
    """
57
    This class is based class for InstanceNorm1D, 2d, 3d.
58

C
cnn 已提交
59
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
60 61
    """

62 63 64 65 66 67 68 69 70 71
    def __init__(
        self,
        num_features,
        epsilon=1e-5,
        momentum=0.9,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
        name=None,
    ):
72 73 74
        super(_InstanceNormBase, self).__init__()

        if weight_attr == False or bias_attr == False:
75 76
            assert (
                weight_attr == bias_attr
77
            ), "weight_attr and bias_attr must be set to False at the same time in InstanceNorm"
78 79 80
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
81
        self._num_features = num_features
82 83 84 85 86 87

        if weight_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
88 89 90 91 92 93 94 95
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True,
            )
96 97 98 99 100 101 102 103 104 105
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

106 107 108
        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon
        )
109

110
    def extra_repr(self):
111 112 113
        return 'num_features={}, epsilon={}'.format(
            self._num_features, self._epsilon
        )
114

115

C
cnn 已提交
116
class InstanceNorm1D(_InstanceNormBase):
117
    r"""
118
    Create a callable object of `InstanceNorm1D`. Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
119 120 121 122 123 124

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
125

126 127 128 129 130 131 132
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
133

134
Where `H` means height of feature map, `W` means width of feature map.
135 136 137 138 139 140 141

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
142 143 144 145
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
146
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
147 148 149 150
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
151
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

169
          x = paddle.rand((2, 2, 3))
C
cnn 已提交
170
          instance_norm = paddle.nn.InstanceNorm1D(2)
171 172
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
173
          print(instance_norm_out)
174 175 176 177 178

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
179 180 181 182 183
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
184 185


C
cnn 已提交
186
class InstanceNorm2D(_InstanceNormBase):
187
    r"""
188
    Create a callable object of `InstanceNorm2D`. Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
189 190 191 192 193 194 195

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
196

197 198 199 200 201 202 203
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
204

205
Where `H` means height of feature map, `W` means width of feature map.
206 207 208 209 210 211 212

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
213 214 215 216
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
217
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
218 219 220 221
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
    `       If it is set to False, will not create bias_attr. Default: None.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

237
            import paddle
238

239 240 241
            x = paddle.rand((2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm2D(2)
            instance_norm_out = instance_norm(x)
242

243
            print(instance_norm_out)
244 245 246 247
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
248 249 250
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
251 252


C
cnn 已提交
253
class InstanceNorm3D(_InstanceNormBase):
254
    r"""
255
    Create a callable object of `InstanceNorm3D`. Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
256 257 258 259 260 261 262

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
263

264 265 266 267 268 269 270
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
271

272
Where `H` means height of feature map, `W` means width of feature map.
273 274 275 276 277 278 279

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
280 281 282 283
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
284
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
285 286 287 288
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

304
            import paddle
305

306 307 308
            x = paddle.rand((2, 2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm3D(2)
            instance_norm_out = instance_norm(x)
309

310
            print(instance_norm_out.numpy)
311 312 313 314
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
315 316 317
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
318 319


Z
zhiboniu 已提交
320
class GroupNorm(Layer):
321 322 323 324 325 326 327 328
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
329
        num_channels(int): The number of channels of input.
330
        epsilon(float, optional): The small value added to the variance to prevent
331
            division by zero. Default: 1e-05.
332
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
333 334
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
335
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
336 337
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
338 339 340 341
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
342 343
        - x: Tensor with shape: (batch, num_features, *).
        - output: The same shape as input x.
344 345 346 347 348 349

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
350

351 352
            import paddle
            import numpy as np
353

354 355 356 357 358 359
            paddle.disable_static()
            np.random.seed(123)
            x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
            x = paddle.to_tensor(x_data)
            group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
            group_norm_out = group_norm(x)
360

361
            print(group_norm_out.numpy())
362 363
    """

364 365 366 367 368 369 370 371 372 373
    def __init__(
        self,
        num_groups,
        num_channels,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
374 375 376 377 378 379
        super(GroupNorm, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
380
        if data_format != 'NCHW':
381
            raise ValueError("unsupported data layout:" + data_format)
382 383 384

        param_shape = [self._num_channels]

385 386
        if weight_attr == False:
            self.weight = self.create_parameter(
387 388
                attr=None, shape=param_shape, default_initializer=Constant(1.0)
            )
389 390 391 392 393
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
394 395 396 397 398 399
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
                self._weight_attr != None
                and self._weight_attr.learning_rate == 0.0
            )
400

401
        if bias_attr == False:
402 403 404 405 406 407
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
408 409
            self.bias.stop_gradient = True
        else:
410 411 412 413 414 415
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
            self.bias.stop_gradient = (
                self._bias_attr != None and self._bias_attr.learning_rate == 0.0
            )
416 417

    def forward(self, input):
418
        mean_out = self._helper.create_variable_for_type_inference(
419 420
            dtype=input.dtype, stop_gradient=True
        )
421
        variance_out = self._helper.create_variable_for_type_inference(
422 423
            dtype=input.dtype, stop_gradient=True
        )
424

425
        if in_dygraph_mode():
426 427 428 429 430 431 432 433
            pre_act = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._num_groups,
                "NCHW",
            )
434

435 436 437
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
438 439

        elif _in_legacy_dygraph():
440
            pre_act, _, _ = _legacy_C_ops.group_norm(
441 442 443 444 445 446 447 448
                input,
                self.weight,
                self.bias,
                mean_out,
                variance_out,
                'epsilon',
                self._epsilon,
                'groups',
449 450
                self._num_groups,
            )
451 452 453
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
454

455 456 457 458 459 460 461 462
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        group_norm_out = self._helper.create_variable_for_type_inference(
463 464 465 466 467 468 469 470 471 472 473 474 475
            dtype=input.dtype
        )

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon, "groups": self._num_groups},
        )
476 477 478

        return self._helper.append_activation(group_norm_out, None)

479 480
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
481 482
            self._num_groups, self._num_channels, self._epsilon
        )
483

484

Z
zhiboniu 已提交
485
class LayerNorm(Layer):
486
    r"""
487
    Construct a callable object of the ``LayerNorm`` class.
488 489 490 491 492 493 494 495
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

496
        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i
497

498
        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}
499

500
        y & = f(\frac{g}{\sigma}(x - \mu) + b)
501 502 503

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
504
    - :math:`\epsilon`: the small value added to the variance to prevent division by zero.
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

536 537
          x = paddle.rand((2, 2, 2, 3))
          layer_norm = paddle.nn.LayerNorm(x.shape[1:])
538 539
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
540
          print(layer_norm_out)
541 542
    """

543 544 545 546 547 548 549 550
    def __init__(
        self,
        normalized_shape,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
567 568
                default_initializer=Constant(1.0),
            )
569 570 571 572

        if bias_attr is False:
            self.bias = None
        else:
573 574 575
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
576 577

    def forward(self, input):
578 579 580 581 582 583 584
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon,
        )
585

586
    def extra_repr(self):
587 588 589
        return 'normalized_shape={}, epsilon={}'.format(
            self._normalized_shape, self._epsilon
        )
590

591

Z
zhiboniu 已提交
592
class _BatchNormBase(Layer):
593 594 595 596
    """
    BatchNorm base .
    """

597 598 599 600 601 602 603 604 605 606 607
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        use_global_stats=None,
        name=None,
    ):
608 609 610 611
        super(_BatchNormBase, self).__init__()
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
612
        self._use_global_stats = use_global_stats
613 614

        if get_default_dtype() == 'float16':
G
Guoxia Wang 已提交
615 616 617
            self._dtype = 'float32'
        else:
            self._dtype = get_default_dtype()
618 619 620 621

        param_shape = [num_features]

        # create parameter
622 623
        if weight_attr == False:
            self.weight = self.create_parameter(
G
Guoxia Wang 已提交
624 625 626
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
627 628
                default_initializer=Constant(1.0),
            )
629 630 631 632 633
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
G
Guoxia Wang 已提交
634
                dtype=self._dtype,
635 636 637 638 639 640
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
                self._weight_attr != None
                and self._weight_attr.learning_rate == 0.0
            )
641

642
        if bias_attr == False:
643 644 645 646 647 648 649
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
650 651
            self.bias.stop_gradient = True
        else:
652 653 654 655 656 657 658 659 660
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
            self.bias.stop_gradient = (
                self._bias_attr != None and self._bias_attr.learning_rate == 0.0
            )
661 662 663 664 665 666 667 668

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

669 670 671 672 673 674 675 676 677 678
        self._mean = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
679 680
        self._mean.stop_gradient = True

681 682 683 684 685 686 687 688 689 690
        self._variance = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
691 692 693 694 695 696 697
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
698
        self._name = name
699 700 701 702

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

703 704 705
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

706 707
    def forward(self, input):

708 709
        self._check_data_format(self._data_format)

710 711
        self._check_input_dim(input)

712
        if self.training:
713
            warnings.warn(
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
                "When training, we now always track global mean and variance."
            )

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format,
            use_global_stats=self._use_global_stats,
        )
729

730 731
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
732 733
            self._num_features, self._momentum, self._epsilon
        )
734
        if self._data_format != 'NCHW':
735 736 737 738 739
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

740

C
cnn 已提交
741
class BatchNorm1D(_BatchNormBase):
742
    r"""
743 744
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

745 746
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
747 748 749 750
    Calculated as follows:

    ..  math::

751 752 753 754
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
755

756 757
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
758 759 760 761
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
762 763
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
764 765 766 767 768

    The normalization function formula is as follows:

    ..  math::

769 770
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
771

772 773 774
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
775 776 777 778 779 780 781

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
782
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
783
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
784 785
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
786
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
787
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
788
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL".
C
ceci3 已提交
789
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
790 791 792
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
793 794
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
795 796 797 798
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
799

800 801 802 803 804 805

    Examples:
        .. code-block:: python

          import paddle

806
          x = paddle.rand((2, 1, 3))
C
cnn 已提交
807
          batch_norm = paddle.nn.BatchNorm1D(1)
808 809
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
810
          print(batch_norm_out)
811 812
    """

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCL',
        use_global_stats=None,
        name=None,
    ):
        super(BatchNorm1D, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
834

835 836 837
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
838 839
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
840
        else:
F
Feiyu Chan 已提交
841
            raise ValueError(
842 843
                'expected NC , NCL, NLC or None for data_format input'
            )
844

845 846
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
847 848 849 850 851
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
852 853


C
cnn 已提交
854
class BatchNorm2D(_BatchNormBase):
855
    r"""
856 857
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

858 859
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
860 861 862 863
    Calculated as follows:

    ..  math::

864 865
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
866
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
867
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
868

869 870
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
871 872 873 874
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
875 876
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
877 878 879 880 881

    The normalization function formula is as follows:

    ..  math::

882 883
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
884

885 886 887
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
888 889 890 891 892 893 894

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
895
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
896
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
897 898
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
899
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
900
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
901
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
902
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
903 904 905
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
906 907
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
908 909 910 911 912 913 914 915 916 917
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

918
          x = paddle.rand((2, 1, 2, 3))
C
cnn 已提交
919
          batch_norm = paddle.nn.BatchNorm2D(1)
920 921
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
922
          print(batch_norm_out)
923 924
    """

925
    def _check_data_format(self, input):
926
        if input == 'NCHW':
927
            self._data_format = input
F
Feiyu Chan 已提交
928 929
        elif input == "NHWC":
            self._data_format = input
930
        else:
F
Feiyu Chan 已提交
931
            raise ValueError('expected NCHW or NHWC for data_format input')
932

933 934
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
935 936 937
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
938 939


C
cnn 已提交
940
class BatchNorm3D(_BatchNormBase):
941
    r"""
942 943
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

944 945
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
946 947 948 949
    Calculated as follows:

    ..  math::

950 951 952 953
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
954

C
ceci3 已提交
955
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
956 957 958 959 960
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
961 962
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
963 964 965 966 967

    The normalization function formula is as follows:

    ..  math::

968 969
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
970

971 972 973
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
974 975 976 977 978 979 980

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
981
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
982
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
983 984
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
985
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
986
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
987
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
988
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
989 990 991
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
992 993
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
994 995 996 997 998 999 1000 1001 1002 1003
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

1004
          x = paddle.rand((2, 1, 2, 2, 3))
C
cnn 已提交
1005
          batch_norm = paddle.nn.BatchNorm3D(1)
1006 1007
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
1008
          print(batch_norm_out)
1009 1010
    """

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCDHW',
        use_global_stats=None,
        name=None,
    ):
        super(BatchNorm3D, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
1032

1033 1034 1035
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
1036 1037
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
1038
        else:
F
Feiyu Chan 已提交
1039
            raise ValueError(
1040 1041
                'expected NCDHW, NDHWC or None for data_format input'
            )
1042

1043 1044
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
1045 1046 1047
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
1048 1049


1050
class SyncBatchNorm(_BatchNormBase):
1051
    r"""
C
ceci3 已提交
1052
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
1053 1054
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
    be used as a normalizer function for other operations, such as conv2d and fully connected
C
ceci3 已提交
1055 1056 1057 1058 1059 1060 1061
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1062
    When model in training mode, the :math:`\\mu_{\\beta}`
C
ceci3 已提交
1063 1064 1065 1066 1067
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

1068 1069 1070 1071
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
C
ceci3 已提交
1072 1073 1074 1075 1076

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
1077
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance,
C
ceci3 已提交
1078 1079 1080
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
1081 1082
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
C
ceci3 已提交
1083 1084

    The formula of normalization is as follows:
1085

C
ceci3 已提交
1086 1087
    ..  math::

1088 1089 1090
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
C
ceci3 已提交
1091

1092 1093
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
1094
    - :math:`\beta` : trainable shift parameter vector
C
ceci3 已提交
1095

1096
    Note:
1097 1098 1099
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of
        ``list`` to pack the model.
1100

C
ceci3 已提交
1101 1102 1103 1104 1105 1106 1107
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
1108
             is not set, the parameter is initialized with ones. If it is set to False,
C
ceci3 已提交
1109 1110 1111 1112
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1113
             is not set, the bias is initialized zero. If it is set to False, this layer will not
C
ceci3 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import numpy as np

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          x = paddle.to_tensor(x)
C
ceci3 已提交
1129 1130

          if paddle.is_compiled_with_cuda():
C
ceci3 已提交
1131 1132
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
C
ceci3 已提交
1133
              print(hidden1)
C
ceci3 已提交
1134 1135 1136
              # [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
    """

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
        super(SyncBatchNorm, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            None,
            name,
        )
C
ceci3 已提交
1157

C
ceci3 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1168
    def forward(self, x):
C
ceci3 已提交
1169
        self._check_data_format()
C
ceci3 已提交
1170 1171 1172 1173 1174 1175 1176 1177
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        ### use_global_stats only support False in sync_batch_norm
1178
        if in_dygraph_mode():
1179
            sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm_(
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                self._momentum,
                self._epsilon,
                self._data_format,
                not self.training,
                False,
                False,
                False,
            )
1193 1194 1195
            return sync_batch_norm_out

        elif in_dynamic_mode():
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
            attrs = (
                "momentum",
                self._momentum,
                "epsilon",
                self._epsilon,
                "is_test",
                not self.training,
                "data_layout",
                self._data_format,
                "use_mkldnn",
                False,
                "fuse_with_relu",
                False,
                "use_global_stats",
                False,
                'trainable_statistics',
                False,
            )
1214
            sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
1215 1216 1217 1218 1219 1220 1221 1222 1223
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                mean_out,
                variance_out,
                *attrs
            )
C
ceci3 已提交
1224 1225
            return sync_batch_norm_out

1226 1227 1228
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm'
        )
C
ceci3 已提交
1229 1230 1231 1232 1233

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1234
            "data_layout": self._data_format,
C
ceci3 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1246
            "Variance": [self._variance],
C
ceci3 已提交
1247 1248 1249
        }

        saved_mean = self._helper.create_variable_for_type_inference(
1250 1251
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1252
        saved_variance = self._helper.create_variable_for_type_inference(
1253 1254
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1255
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
1256 1257
            self._dtype
        )
C
ceci3 已提交
1258 1259 1260 1261 1262 1263

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1264
            "SavedVariance": [saved_variance],
C
ceci3 已提交
1265 1266
        }

1267 1268 1269
        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
C
ceci3 已提交
1270
        return sync_batch_norm_out
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1289
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1290 1291 1292 1293 1294
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
1295 1296 1297 1298 1299
            if (
                layer._weight_attr != None
                and not isinstance(layer._weight_attr, bool)
                and layer._weight_attr.name != None
            ):
C
ceci3 已提交
1300
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
1301 1302 1303 1304 1305
            if (
                layer._bias_attr != None
                and not isinstance(layer._bias_attr, bool)
                and layer._bias_attr.name != None
            ):
C
ceci3 已提交
1306 1307
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

1308 1309 1310 1311 1312 1313 1314 1315 1316
            layer_output = SyncBatchNorm(
                layer._num_features,
                layer._momentum,
                layer._epsilon,
                layer._weight_attr,
                layer._bias_attr,
                layer._data_format,
                layer._name,
            )
1317 1318 1319 1320 1321 1322 1323 1324

            if layer._weight_attr != False and layer._bias_attr != False:
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1325
        for name, sublayer in layer.named_children():
1326 1327 1328
            layer_output.add_sublayer(
                name, cls.convert_sync_batchnorm(sublayer)
            )
1329 1330
        del layer
        return layer_output
1331 1332


Z
zhiboniu 已提交
1333
class LocalResponseNorm(Layer):
1334
    """
1335 1336
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
1337

1338
    See more details in :ref:`api_paddle_nn_functional_local_response_norm` .
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    Parameters:
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
1355

1356 1357 1358
    Shape:
        - input: 3-D/4-D/5-D tensor.
        - output: 3-D/4-D/5-D tensor, the same shape as input.
1359

1360
    Examples:
1361

1362
    .. code-block:: python
1363

1364 1365 1366 1367 1368 1369 1370
        import paddle

        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        m = paddle.nn.LocalResponseNorm(size=5)
        y = m(x)
        print(y.shape)  # [3, 3, 112, 112]
    """
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380
    def __init__(
        self,
        size,
        alpha=0.0001,
        beta=0.75,
        k=1.0,
        data_format="NCHW",
        name=None,
    ):
1381 1382 1383 1384 1385 1386 1387 1388 1389
        super(LocalResponseNorm, self).__init__()
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
1390 1391 1392 1393 1394 1395 1396 1397 1398
        out = F.local_response_norm(
            input,
            self.size,
            self.alpha,
            self.beta,
            self.k,
            self.data_format,
            self.name,
        )
1399
        return out
1400 1401 1402

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
1403 1404
            self.size, self.alpha, self.beta, self.k
        )
1405
        if self.data_format != 'NCHW':
1406 1407 1408 1409
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str