norm.py 54.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

28
# TODO: define normalization api
29

30
import six
31

Z
zhiboniu 已提交
32 33
from ...fluid.dygraph import BatchNorm  # noqa: F401
from ...fluid.dygraph import SpectralNorm  # noqa: F401
C
ceci3 已提交
34

35
from ...framework import get_default_dtype, set_default_dtype, _non_static_mode
C
ceci3 已提交
36

Z
zhiboniu 已提交
37 38
from ..initializer import Constant
from ...framework import ParamAttr
C
ceci3 已提交
39
from ...fluid.data_feeder import check_variable_and_dtype, check_type
Z
zhiboniu 已提交
40
from ...fluid import dygraph_utils
41 42 43 44 45 46

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
Z
zhiboniu 已提交
47
from ...framework import no_grad
48
from .. import functional as F
49
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
50
from .. import Layer
Z
zhiboniu 已提交
51
from paddle import in_dynamic_mode
52
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
53

54 55
__all__ = []

C
ceci3 已提交
56

Z
zhiboniu 已提交
57
class _InstanceNormBase(Layer):
58
    """
59
    This class is based class for InstanceNorm1D, 2d, 3d.
60

C
cnn 已提交
61
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
62 63 64 65 66 67 68 69 70 71 72 73 74
    """

    def __init__(self,
                 num_features,
                 epsilon=1e-5,
                 momentum=0.9,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW",
                 name=None):
        super(_InstanceNormBase, self).__init__()

        if weight_attr == False or bias_attr == False:
75
            assert weight_attr == bias_attr, "weight_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
76 77 78
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
79
        self._num_features = num_features
80 81 82 83 84 85 86

        if weight_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
                is_bias=False)
87 88 89 90
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[num_features],
                                              default_initializer=Constant(0.0),
                                              is_bias=True)
91 92 93 94 95 96 97 98 99 100
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

101 102 103 104
        return instance_norm(input,
                             weight=self.scale,
                             bias=self.bias,
                             eps=self._epsilon)
105

106
    def extra_repr(self):
107
        return 'num_features={}, epsilon={}'.format(self._num_features,
108 109
                                                    self._epsilon)

110

C
cnn 已提交
111
class InstanceNorm1D(_InstanceNormBase):
112
    r"""
113
    Create a callable object of `InstanceNorm1D`. Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
114 115 116 117 118 119

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
120

121 122 123 124 125 126 127
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
128

129
Where `H` means height of feature map, `W` means width of feature map.
130 131 132 133 134 135 136

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
137 138 139 140
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
141
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
142 143 144 145
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
146
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

164
          x = paddle.rand((2, 2, 3))
C
cnn 已提交
165
          instance_norm = paddle.nn.InstanceNorm1D(2)
166 167
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
168
          print(instance_norm_out)
169 170 171 172 173 174 175 176 177

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'.format(
                len(input.shape)))


C
cnn 已提交
178
class InstanceNorm2D(_InstanceNormBase):
179
    r"""
180
    Create a callable object of `InstanceNorm2D`. Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
181 182 183 184 185 186 187

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
188

189 190 191 192 193 194 195
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
196

197
Where `H` means height of feature map, `W` means width of feature map.
198 199 200 201 202 203 204

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
205 206 207 208
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
209
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
210 211 212 213
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
    `       If it is set to False, will not create bias_attr. Default: None.
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

229
            import paddle
230

231 232 233
            x = paddle.rand((2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm2D(2)
            instance_norm_out = instance_norm(x)
234

235
            print(instance_norm_out)
236 237 238 239 240 241 242 243
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
            raise ValueError('expected 4D input (got {}D input)'.format(
                len(input.shape)))


C
cnn 已提交
244
class InstanceNorm3D(_InstanceNormBase):
245
    r"""
246
    Create a callable object of `InstanceNorm3D`. Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
247 248 249 250 251 252 253

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
254

255 256 257 258 259 260 261
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
262

263
Where `H` means height of feature map, `W` means width of feature map.
264 265 266 267 268 269 270

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
271 272 273 274
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
275
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
276 277 278 279
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

295
            import paddle
296

297 298 299
            x = paddle.rand((2, 2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm3D(2)
            instance_norm_out = instance_norm(x)
300

301
            print(instance_norm_out.numpy)
302 303 304 305 306 307 308 309
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
            raise ValueError('expected 5D input (got {}D input)'.format(
                len(input.shape)))


Z
zhiboniu 已提交
310
class GroupNorm(Layer):
311 312 313 314 315 316 317 318
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
319
        num_channels(int): The number of channels of input.
320
        epsilon(float, optional): The small value added to the variance to prevent
321
            division by zero. Default: 1e-05.
322
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
323 324
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
325
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
326 327
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
328 329 330 331
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
332 333
        - x: Tensor with shape: (batch, num_features, *).
        - output: The same shape as input x.
334 335 336 337 338 339

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
340

341 342
            import paddle
            import numpy as np
343

344 345 346 347 348 349
            paddle.disable_static()
            np.random.seed(123)
            x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
            x = paddle.to_tensor(x_data)
            group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
            group_norm_out = group_norm(x)
350

351
            print(group_norm_out.numpy())
352 353 354 355
    """

    def __init__(self,
                 num_groups,
356
                 num_channels,
357 358 359
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
360
                 data_format='NCHW',
361 362 363 364 365 366 367
                 name=None):
        super(GroupNorm, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
368
        if data_format != 'NCHW':
369
            raise ValueError("unsupported data layout:" + data_format)
370 371 372

        param_shape = [self._num_channels]

373 374 375 376 377 378 379 380 381 382
        if weight_attr == False:
            self.weight = self.create_parameter(
                attr=None, shape=param_shape, default_initializer=Constant(1.0))
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))
            self.weight.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.
383

384
        if bias_attr == False:
385 386 387 388
            self.bias = self.create_parameter(attr=None,
                                              shape=param_shape,
                                              default_initializer=Constant(0.0),
                                              is_bias=True)
389 390
            self.bias.stop_gradient = True
        else:
391 392 393
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=param_shape,
                                              is_bias=True)
394
            self.bias.stop_gradient = self._bias_attr != None and self._bias_attr.learning_rate == 0.
395 396

    def forward(self, input):
397 398 399 400 401
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True)

402
        if in_dygraph_mode():
403 404
            pre_act = _C_ops.group_norm(input, self.weight, self.bias,
                                        self._epsilon, self._num_groups, "NCHW")
405 406 407 408 409

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               act=None)

        elif _in_legacy_dygraph():
410
            pre_act, _, _ = _legacy_C_ops.group_norm(
411 412 413 414 415 416 417 418
                input,
                self.weight,
                self.bias,
                mean_out,
                variance_out,
                'epsilon',
                self._epsilon,
                'groups',
419 420 421 422
                self._num_groups,
            )
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               act=None)
423

424 425 426 427 428 429 430 431 432 433
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)

434 435 436 437 438 439 440 441 442 443 444
        self._helper.append_op(type="group_norm",
                               inputs=inputs,
                               outputs={
                                   "Y": group_norm_out,
                                   "Mean": mean_out,
                                   "Variance": variance_out,
                               },
                               attrs={
                                   "epsilon": self._epsilon,
                                   "groups": self._num_groups
                               })
445 446 447

        return self._helper.append_activation(group_norm_out, None)

448 449 450 451
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
            self._num_groups, self._num_channels, self._epsilon)

452

Z
zhiboniu 已提交
453
class LayerNorm(Layer):
454
    r"""
455
    Construct a callable object of the ``LayerNorm`` class.
456 457 458 459 460 461 462 463
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

464
        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i
465

466
        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}
467

468
        y & = f(\frac{g}{\sigma}(x - \mu) + b)
469 470 471

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
472
    - :math:`\epsilon`: the small value added to the variance to prevent division by zero.
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

504 505
          x = paddle.rand((2, 2, 2, 3))
          layer_norm = paddle.nn.LayerNorm(x.shape[1:])
506 507
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
508
          print(layer_norm_out)
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    """

    def __init__(self,
                 normalized_shape,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))

        if bias_attr is False:
            self.bias = None
        else:
538 539 540
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=param_shape,
                                              is_bias=True)
541 542

    def forward(self, input):
543 544 545 546 547
        return layer_norm(input,
                          normalized_shape=self._normalized_shape,
                          weight=self.weight,
                          bias=self.bias,
                          epsilon=self._epsilon)
548

549 550 551 552
    def extra_repr(self):
        return 'normalized_shape={}, epsilon={}'.format(self._normalized_shape,
                                                        self._epsilon)

553

Z
zhiboniu 已提交
554
class _BatchNormBase(Layer):
555 556 557 558 559 560 561 562 563 564 565
    """
    BatchNorm base .
    """

    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
C
ceci3 已提交
566
                 use_global_stats=None,
567 568 569 570 571
                 name=None):
        super(_BatchNormBase, self).__init__()
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
572
        self._use_global_stats = use_global_stats
573 574

        if get_default_dtype() == 'float16':
G
Guoxia Wang 已提交
575 576 577
            self._dtype = 'float32'
        else:
            self._dtype = get_default_dtype()
578 579 580 581

        param_shape = [num_features]

        # create parameter
582 583
        if weight_attr == False:
            self.weight = self.create_parameter(
G
Guoxia Wang 已提交
584 585 586 587
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
588 589 590 591 592
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
G
Guoxia Wang 已提交
593
                dtype=self._dtype,
594 595
                default_initializer=Constant(1.0))
            self.weight.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.
596

597
        if bias_attr == False:
598 599 600 601 602
            self.bias = self.create_parameter(attr=None,
                                              shape=param_shape,
                                              dtype=self._dtype,
                                              default_initializer=Constant(0.0),
                                              is_bias=True)
603 604
            self.bias.stop_gradient = True
        else:
605 606 607 608
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=param_shape,
                                              dtype=self._dtype,
                                              is_bias=True)
609
            self.bias.stop_gradient = self._bias_attr != None and self._bias_attr.learning_rate == 0.
610 611 612 613 614 615 616 617

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

618 619 620 621 622 623 624
        self._mean = self.create_parameter(dtype=self._dtype,
                                           attr=ParamAttr(
                                               name=moving_mean_name,
                                               initializer=Constant(0.0),
                                               trainable=False,
                                               do_model_average=True),
                                           shape=param_shape)
625 626
        self._mean.stop_gradient = True

627 628 629 630 631 632 633
        self._variance = self.create_parameter(dtype=self._dtype,
                                               attr=ParamAttr(
                                                   name=moving_variance_name,
                                                   initializer=Constant(1.0),
                                                   trainable=False,
                                                   do_model_average=True),
                                               shape=param_shape)
634 635 636 637 638 639 640
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
641
        self._name = name
642 643 644 645

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

646 647 648
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

649 650
    def forward(self, input):

651 652
        self._check_data_format(self._data_format)

653 654
        self._check_input_dim(input)

655
        if self.training:
656 657 658
            warnings.warn(
                "When training, we now always track global mean and variance.")

659 660 661 662 663 664 665 666 667 668
        return batch_norm(input,
                          self._mean,
                          self._variance,
                          weight=self.weight,
                          bias=self.bias,
                          training=self.training,
                          momentum=self._momentum,
                          epsilon=self._epsilon,
                          data_format=self._data_format,
                          use_global_stats=self._use_global_stats)
669

670 671 672
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
            self._num_features, self._momentum, self._epsilon)
673
        if self._data_format != 'NCHW':
674 675 676 677 678
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

679

C
cnn 已提交
680
class BatchNorm1D(_BatchNormBase):
681
    r"""
682 683
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

684 685
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
686 687 688 689
    Calculated as follows:

    ..  math::

690 691 692 693
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
694

695 696
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
697 698 699 700
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
701 702
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
703 704 705 706 707

    The normalization function formula is as follows:

    ..  math::

708 709
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
710

711 712 713
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
714 715 716 717 718 719 720 721

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
722
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
723 724 725 726
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
727
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL".
C
ceci3 已提交
728
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
729 730 731
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
732 733
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
734 735 736 737
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
738

739 740 741 742 743 744

    Examples:
        .. code-block:: python

          import paddle

745
          x = paddle.rand((2, 1, 3))
C
cnn 已提交
746
          batch_norm = paddle.nn.BatchNorm1D(1)
747 748
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
749
          print(batch_norm_out)
750 751
    """

C
ceci3 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764
    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCL',
                 use_global_stats=None,
                 name=None):
        super(BatchNorm1D,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, use_global_stats, name)

765 766 767
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
768 769
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
770
        else:
F
Feiyu Chan 已提交
771 772
            raise ValueError(
                'expected NC , NCL, NLC or None for data_format input')
773

774 775 776 777 778 779
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'.format(
                len(input.shape)))


C
cnn 已提交
780
class BatchNorm2D(_BatchNormBase):
781
    r"""
782 783
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

784 785
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
786 787 788 789
    Calculated as follows:

    ..  math::

790 791
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
792
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
793
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
794

795 796
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
797 798 799 800
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
801 802
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
803 804 805 806 807

    The normalization function formula is as follows:

    ..  math::

808 809
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
810

811 812 813
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
814 815 816 817 818 819 820 821

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
822
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
823 824 825 826
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
827
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
828
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
829 830 831
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
832 833
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
834 835 836 837 838 839 840 841 842 843
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

844
          x = paddle.rand((2, 1, 2, 3))
C
cnn 已提交
845
          batch_norm = paddle.nn.BatchNorm2D(1)
846 847
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
848
          print(batch_norm_out)
849 850
    """

851
    def _check_data_format(self, input):
852
        if input == 'NCHW':
853
            self._data_format = input
F
Feiyu Chan 已提交
854 855
        elif input == "NHWC":
            self._data_format = input
856
        else:
F
Feiyu Chan 已提交
857
            raise ValueError('expected NCHW or NHWC for data_format input')
858

859 860 861 862 863 864
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
            raise ValueError('expected 4D input (got {}D input)'.format(
                len(input.shape)))


C
cnn 已提交
865
class BatchNorm3D(_BatchNormBase):
866
    r"""
867 868
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

869 870
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
871 872 873 874
    Calculated as follows:

    ..  math::

875 876 877 878
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
879

C
ceci3 已提交
880
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
881 882 883 884 885
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
886 887
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
888 889 890 891 892

    The normalization function formula is as follows:

    ..  math::

893 894
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
895

896 897 898
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
899 900 901 902 903 904 905 906

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
907
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
908 909 910 911
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
912
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
913
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
914 915 916
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
917 918
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
919 920 921 922 923 924 925 926 927 928
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

929
          x = paddle.rand((2, 1, 2, 2, 3))
C
cnn 已提交
930
          batch_norm = paddle.nn.BatchNorm3D(1)
931 932
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
933
          print(batch_norm_out)
934 935
    """

C
ceci3 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948
    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCDHW',
                 use_global_stats=None,
                 name=None):
        super(BatchNorm3D,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, use_global_stats, name)

949 950 951
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
952 953
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
954
        else:
F
Feiyu Chan 已提交
955 956
            raise ValueError(
                'expected NCDHW, NDHWC or None for data_format input')
957

958 959 960 961 962 963
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
            raise ValueError('expected 5D input (got {}D input)'.format(
                len(input.shape)))


964
class SyncBatchNorm(_BatchNormBase):
965
    r"""
C
ceci3 已提交
966
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
967 968
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
    be used as a normalizer function for other operations, such as conv2d and fully connected
C
ceci3 已提交
969 970 971 972 973 974 975
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

976
    When model in training mode, the :math:`\\mu_{\\beta}`
C
ceci3 已提交
977 978 979 980 981
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

982 983 984 985
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
C
ceci3 已提交
986 987 988 989 990

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
991
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance,
C
ceci3 已提交
992 993 994
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
995 996
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
C
ceci3 已提交
997 998

    The formula of normalization is as follows:
999

C
ceci3 已提交
1000 1001
    ..  math::

1002 1003 1004
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
C
ceci3 已提交
1005

1006 1007
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
1008
    - :math:`\beta` : trainable shift parameter vector
C
ceci3 已提交
1009

1010
    Note:
1011 1012 1013
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of
        ``list`` to pack the model.
1014

C
ceci3 已提交
1015 1016 1017 1018 1019 1020 1021
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
1022
             is not set, the parameter is initialized with ones. If it is set to False,
C
ceci3 已提交
1023 1024 1025 1026
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1027
             is not set, the bias is initialized zero. If it is set to False, this layer will not
C
ceci3 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import numpy as np

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          x = paddle.to_tensor(x)
C
ceci3 已提交
1043 1044

          if paddle.is_compiled_with_cuda():
C
ceci3 已提交
1045 1046
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
C
ceci3 已提交
1047
              print(hidden1)
C
ceci3 已提交
1048 1049 1050 1051 1052 1053
              # [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
    """

    def __init__(self,
                 num_features,
                 momentum=0.9,
1054
                 epsilon=1e-05,
C
ceci3 已提交
1055 1056 1057 1058
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
                 name=None):
1059 1060
        super(SyncBatchNorm,
              self).__init__(num_features, momentum, epsilon, weight_attr,
C
ceci3 已提交
1061
                             bias_attr, data_format, None, name)
C
ceci3 已提交
1062

C
ceci3 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1073
    def forward(self, x):
C
ceci3 已提交
1074
        self._check_data_format()
C
ceci3 已提交
1075 1076 1077 1078 1079 1080 1081 1082
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        ### use_global_stats only support False in sync_batch_norm
1083
        if in_dygraph_mode():
1084
            sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm_(
1085 1086 1087 1088 1089 1090
                x, self.weight, self.bias, self._mean, self._variance,
                self._momentum, self._epsilon, self._data_format,
                not self.training, False, False, False)
            return sync_batch_norm_out

        elif in_dynamic_mode():
C
ceci3 已提交
1091 1092
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", not self.training, "data_layout",
1093
                     self._data_format, "use_mkldnn", False, "fuse_with_relu",
C
ceci3 已提交
1094 1095
                     False, "use_global_stats", False, 'trainable_statistics',
                     False)
1096
            sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
C
ceci3 已提交
1097 1098 1099 1100 1101
                x, self.weight, self.bias, self._mean, self._variance, mean_out,
                variance_out, *attrs)
            return sync_batch_norm_out

        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
1102
                                 'SyncBatchNorm')
C
ceci3 已提交
1103 1104 1105 1106 1107

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1108
            "data_layout": self._data_format,
C
ceci3 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

1138 1139 1140 1141
        self._helper.append_op(type="sync_batch_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
C
ceci3 已提交
1142
        return sync_batch_norm_out
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1161
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1162 1163 1164 1165 1166
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
C
ceci3 已提交
1167 1168 1169
            if layer._weight_attr != None and not isinstance(
                    layer._weight_attr,
                    bool) and layer._weight_attr.name != None:
C
ceci3 已提交
1170
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
C
ceci3 已提交
1171 1172
            if layer._bias_attr != None and not isinstance(
                    layer._bias_attr, bool) and layer._bias_attr.name != None:
C
ceci3 已提交
1173 1174
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

1175 1176 1177 1178
            layer_output = SyncBatchNorm(layer._num_features, layer._momentum,
                                         layer._epsilon, layer._weight_attr,
                                         layer._bias_attr, layer._data_format,
                                         layer._name)
1179 1180 1181 1182 1183 1184 1185 1186

            if layer._weight_attr != False and layer._bias_attr != False:
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1187
        for name, sublayer in layer.named_children():
1188 1189 1190 1191
            layer_output.add_sublayer(name,
                                      cls.convert_sync_batchnorm(sublayer))
        del layer
        return layer_output
1192 1193


Z
zhiboniu 已提交
1194
class LocalResponseNorm(Layer):
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    """
        Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
        For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

        See more details in :ref:`api_paddle_nn_functional_local_response_norm` .

        Parameters:
            size (int): The number of channels to sum over.
            alpha (float, optional): The scaling parameter, positive. Default:1e-4
            beta (float, optional): The exponent, positive. Default:0.75
            k (float, optional): An offset, positive. Default: 1.0
            data_format (str, optional): Specify the data format of the input, and the data format of the output
                will be consistent with that of the input. An optional string from:
                If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
                the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
                If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
                If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
            name (str, optional): Name for the operation (optional, default is None). For more information,
                please refer to :ref:`api_guide_Name`.

        Shape:
            - input: 3-D/4-D/5-D tensor.
            - output: 3-D/4-D/5-D tensor, the same shape as input.

        Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
            m = paddle.nn.LocalResponseNorm(size=5)
            y = m(x)
            print(y.shape)  # [3, 3, 112, 112]
        """

    def __init__(self,
                 size,
                 alpha=0.0001,
                 beta=0.75,
                 k=1.0,
                 data_format="NCHW",
                 name=None):
        super(LocalResponseNorm, self).__init__()
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.local_response_norm(input, self.size, self.alpha, self.beta,
                                    self.k, self.data_format, self.name)
        return out
1252 1253 1254 1255

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
            self.size, self.alpha, self.beta, self.k)
1256
        if self.data_format != 'NCHW':
1257 1258 1259 1260
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str