vgg16_fluid.py 11.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2
#
T
typhoonzero 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
F
fengjiayi 已提交
6
#
T
typhoonzero 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
F
fengjiayi 已提交
8
#
T
typhoonzero 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
"""VGG16 benchmark in Fluid

# Single trainer, single PS on a single machine.
VGG_SRC="${CODE_DIR}/vgg16_fluid.py"
export TRAINING_ROLE=PSERVER
export TRAINERS=1
export POD_IP=127.0.0.1
export PADDLE_INIT_PORT=6174
MKL_NUM_THREADS=1 python -u ${VGG_SRC} --local 0 --ps_host=127.0.0.1:6174 --trainer_hosts=127.0.0.1:6174 &
sleep 10  # wait for PS to start.
export TRAINING_ROLE=TRAINER
MKL_NUM_THREADS=1 python -u ${VGG_SRC} --local 0 --ps_host=127.0.0.1:6174 --trainer_hosts=127.0.0.1:6174 --device=GPU &

# To run multiple trainers on a single machine
# change TRAINERS=2 and launch 2 trainers.
# CUDA_VISIBLE_DEVICES=4 MKL_NUM_THREADS=1 python -u ${VGG_SRC} --local 0 --ps_host=127.0.0.1:6174 --trainer_hosts=127.0.0.1:6174 --device=GPU --task_index=0 &
# CUDA_VISIBLE_DEVICES=5 MKL_NUM_THREADS=1 python -u ${VGG_SRC} --local 0 --ps_host=127.0.0.1:6174 --trainer_hosts=127.0.0.1:6174 --device=GPU --task_index=1 &
"""

T
typhoonzero 已提交
33 34 35 36 37 38
from __future__ import print_function

import sys
import time
import numpy as np
import paddle.v2 as paddle
39 40 41
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
T
typhoonzero 已提交
42 43 44
import argparse
import functools
import os
45
from paddle.fluid import debuger
T
typhoonzero 已提交
46

T
typhoonzero 已提交
47

T
typhoonzero 已提交
48 49 50 51 52 53 54 55
def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

T
typhoonzero 已提交
56

T
typhoonzero 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
    '--learning_rate',
    type=float,
    default=1e-3,
    help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
    '--device',
    type=str,
    default='CPU',
    choices=['CPU', 'GPU'],
    help="The device type.")
T
typhoonzero 已提交
72
parser.add_argument('--device_id', type=int, default=0, help="The device id.")
T
typhoonzero 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
parser.add_argument(
    '--data_format',
    type=str,
    default='NCHW',
    choices=['NCHW', 'NHWC'],
    help='The data order, now only support NCHW.')
parser.add_argument(
    '--data_set',
    type=str,
    default='cifar10',
    choices=['cifar10', 'flowers'],
    help='Optional dataset for benchmark.')
parser.add_argument(
    '--local',
    type=str2bool,
    default=True,
    help='Whether to run as local mode.')
G
gongweibao 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

parser.add_argument(
    "--ps_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")
parser.add_argument(
    "--trainer_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")

# Flags for defining the tf.train.Server
parser.add_argument(
    "--task_index", type=int, default=0, help="Index of task within the job")
T
typhoonzero 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
args = parser.parse_args()


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
128
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
T
typhoonzero 已提交
129 130
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
131
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
T
typhoonzero 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    return fc2


def main():
    if args.data_set == "cifar10":
        classdim = 10
        if args.data_format == 'NCHW':
            data_shape = [3, 32, 32]
        else:
            data_shape = [32, 32, 3]
    else:
        classdim = 102
        if args.data_format == 'NCHW':
            data_shape = [3, 224, 224]
        else:
            data_shape = [224, 224, 3]

    # Input data
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    net = vgg16_bn_drop(images)
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
F
fengjiayi 已提交
160 161 162
    batch_size = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size)
T
typhoonzero 已提交
163 164 165 166

    # inference program
    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
F
fengjiayi 已提交
167
        inference_program = fluid.io.get_inference_program(batch_acc)
T
typhoonzero 已提交
168 169 170 171 172 173

    # Optimization
    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    optimize_ops, params_grads = optimizer.minimize(avg_cost)

    # Initialize executor
T
typhoonzero 已提交
174 175
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(
        args.device_id)
T
typhoonzero 已提交
176 177 178 179
    exe = fluid.Executor(place)

    # test
    def test(exe):
F
fengjiayi 已提交
180
        test_pass_acc = fluid.average.WeightedAverage()
T
typhoonzero 已提交
181 182 183 184 185 186
        for batch_id, data in enumerate(test_reader()):
            img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

F
fengjiayi 已提交
187 188 189 190 191
            outs = exe.run(inference_program,
                           feed={"pixel": img_data,
                                 "label": y_data},
                           fetch_list=[batch_acc, batch_size])
            test_pass_acc.add(value=np.array(outs[0]), weight=np.array(outs[1]))
T
typhoonzero 已提交
192

F
fengjiayi 已提交
193
        return test_pass_acc.eval()
T
typhoonzero 已提交
194 195 196

    def train_loop(exe, trainer_prog):
        iters = 0
T
typhoonzero 已提交
197
        ts = time.time()
F
fengjiayi 已提交
198
        train_pass_acc = fluid.average.WeightedAverage()
T
typhoonzero 已提交
199 200 201 202
        for pass_id in range(args.num_passes):
            # train
            start_time = time.time()
            num_samples = 0
F
fengjiayi 已提交
203
            train_pass_acc.reset()
204 205 206 207 208 209 210
            for batch_id, data in enumerate(train_reader()):
                ts = time.time()
                img_data = np.array(
                    map(lambda x: x[0].reshape(data_shape), data)).astype(
                        "float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape([-1, 1])
T
typhoonzero 已提交
211

212 213 214 215 216 217 218 219 220
                loss, acc, b_size = exe.run(
                    trainer_prog,
                    feed={"pixel": img_data,
                          "label": y_data},
                    fetch_list=[avg_cost, batch_acc, batch_size])
                iters += 1
                num_samples += len(data)
                train_pass_acc.add(value=acc, weight=b_size)
                print(
X
Xin Pan 已提交
221 222 223 224
                    "Task:%d Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, "
                    "Speed = %.2f img/s " % (args.task_index, pass_id, iters,
                                             loss, acc,
                                             len(data) / (time.time() - ts))
225
                )  # The accuracy is the accumulation of batches, but not the current batch.
T
typhoonzero 已提交
226 227

            pass_elapsed = time.time() - start_time
F
fengjiayi 已提交
228
            pass_train_acc = train_pass_acc.eval()
T
typhoonzero 已提交
229
            pass_test_acc = test(exe)
X
Xin Pan 已提交
230 231 232 233
            print("Task:%d Pass = %d, Training performance = %f imgs/s, "
                  "Train accuracy = %f, Test accuracy = %f\n" %
                  (args.task_index, pass_id, num_samples / pass_elapsed,
                   pass_train_acc, pass_test_acc))
T
typhoonzero 已提交
234 235 236 237 238 239 240 241

    if args.local:
        # Parameter initialization
        exe.run(fluid.default_startup_program())

        # data reader
        train_reader = paddle.batch(
            paddle.reader.shuffle(
T
typhoonzero 已提交
242 243
                paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
244 245 246 247 248 249 250 251 252
                buf_size=5120),
            batch_size=args.batch_size)
        test_reader = paddle.batch(
            paddle.dataset.cifar.test10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
            batch_size=args.batch_size)
        train_loop(exe, fluid.default_main_program())
    else:
        trainers = int(os.getenv("TRAINERS"))  # total trainer count
T
typhoonzero 已提交
253
        print("trainers total: ", trainers)
G
gongweibao 已提交
254

T
typhoonzero 已提交
255 256 257
        training_role = os.getenv(
            "TRAINING_ROLE",
            "TRAINER")  # get the training role: trainer/pserver
G
gongweibao 已提交
258

T
typhoonzero 已提交
259 260
        t = fluid.DistributeTranspiler()
        t.transpile(
T
typhoonzero 已提交
261 262
            optimize_ops,
            params_grads,
G
gongweibao 已提交
263 264
            trainer_id=args.task_index,
            pservers=args.ps_hosts,
T
typhoonzero 已提交
265
            trainers=trainers)
T
typhoonzero 已提交
266 267

        if training_role == "PSERVER":
G
gongweibao 已提交
268 269
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_INIT_PORT")
T
typhoonzero 已提交
270 271 272 273
            if not current_endpoint:
                print("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
274 275
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
T
typhoonzero 已提交
276 277 278 279 280 281 282 283 284
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            # Parameter initialization
            exe.run(fluid.default_startup_program())

            # data reader
            train_reader = paddle.batch(
                paddle.reader.shuffle(
T
typhoonzero 已提交
285 286
                    paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                    else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
287 288 289
                    buf_size=5120),
                batch_size=args.batch_size)
            test_reader = paddle.batch(
T
typhoonzero 已提交
290 291
                paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else
                paddle.dataset.flowers.test(),
T
typhoonzero 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
                batch_size=args.batch_size)

            trainer_prog = t.get_trainer_program()
            feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
            # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver
            exe.run(fluid.default_startup_program())
            train_loop(exe, trainer_prog)
        else:
            print("environment var TRAINER_ROLE should be TRAINER os PSERVER")


def print_arguments():
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    print_arguments()
    main()