vgg16_fluid.py 10.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2
#
T
typhoonzero 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
F
fengjiayi 已提交
6
#
T
typhoonzero 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
F
fengjiayi 已提交
8
#
T
typhoonzero 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
typhoonzero 已提交
14 15 16 17 18 19 20
"""VGG16 benchmark in Fluid"""
from __future__ import print_function

import sys
import time
import numpy as np
import paddle.v2 as paddle
21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
T
typhoonzero 已提交
24 25 26
import argparse
import functools
import os
27
from paddle.fluid import debuger
T
typhoonzero 已提交
28

T
typhoonzero 已提交
29

T
typhoonzero 已提交
30 31 32 33 34 35 36 37
def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

T
typhoonzero 已提交
38

T
typhoonzero 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
    '--learning_rate',
    type=float,
    default=1e-3,
    help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
    '--device',
    type=str,
    default='CPU',
    choices=['CPU', 'GPU'],
    help="The device type.")
T
typhoonzero 已提交
54
parser.add_argument('--device_id', type=int, default=0, help="The device id.")
T
typhoonzero 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
parser.add_argument(
    '--data_format',
    type=str,
    default='NCHW',
    choices=['NCHW', 'NHWC'],
    help='The data order, now only support NCHW.')
parser.add_argument(
    '--data_set',
    type=str,
    default='cifar10',
    choices=['cifar10', 'flowers'],
    help='Optional dataset for benchmark.')
parser.add_argument(
    '--local',
    type=str2bool,
    default=True,
    help='Whether to run as local mode.')
G
gongweibao 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

parser.add_argument(
    "--ps_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")
parser.add_argument(
    "--trainer_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")

# Flags for defining the tf.train.Server
parser.add_argument(
    "--task_index", type=int, default=0, help="Index of task within the job")
T
typhoonzero 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
args = parser.parse_args()


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
110
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
T
typhoonzero 已提交
111 112
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
113
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
T
typhoonzero 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    return fc2


def main():
    if args.data_set == "cifar10":
        classdim = 10
        if args.data_format == 'NCHW':
            data_shape = [3, 32, 32]
        else:
            data_shape = [32, 32, 3]
    else:
        classdim = 102
        if args.data_format == 'NCHW':
            data_shape = [3, 224, 224]
        else:
            data_shape = [224, 224, 3]

    # Input data
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    net = vgg16_bn_drop(images)
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
F
fengjiayi 已提交
142 143 144
    batch_size = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size)
T
typhoonzero 已提交
145 146 147 148

    # inference program
    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
F
fengjiayi 已提交
149
        inference_program = fluid.io.get_inference_program(batch_acc)
T
typhoonzero 已提交
150 151 152 153 154 155

    # Optimization
    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    optimize_ops, params_grads = optimizer.minimize(avg_cost)

    # Initialize executor
T
typhoonzero 已提交
156 157
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(
        args.device_id)
T
typhoonzero 已提交
158 159 160 161
    exe = fluid.Executor(place)

    # test
    def test(exe):
F
fengjiayi 已提交
162
        test_pass_acc = fluid.average.WeightedAverage()
T
typhoonzero 已提交
163 164 165 166 167 168
        for batch_id, data in enumerate(test_reader()):
            img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

F
fengjiayi 已提交
169 170 171 172 173
            outs = exe.run(inference_program,
                           feed={"pixel": img_data,
                                 "label": y_data},
                           fetch_list=[batch_acc, batch_size])
            test_pass_acc.add(value=np.array(outs[0]), weight=np.array(outs[1]))
T
typhoonzero 已提交
174

F
fengjiayi 已提交
175
        return test_pass_acc.eval()
T
typhoonzero 已提交
176 177 178

    def train_loop(exe, trainer_prog):
        iters = 0
T
typhoonzero 已提交
179
        ts = time.time()
F
fengjiayi 已提交
180
        train_pass_acc = fluid.average.WeightedAverage()
T
typhoonzero 已提交
181 182 183 184
        for pass_id in range(args.num_passes):
            # train
            start_time = time.time()
            num_samples = 0
F
fengjiayi 已提交
185
            train_pass_acc.reset()
186 187 188 189 190 191 192
            for batch_id, data in enumerate(train_reader()):
                ts = time.time()
                img_data = np.array(
                    map(lambda x: x[0].reshape(data_shape), data)).astype(
                        "float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape([-1, 1])
T
typhoonzero 已提交
193

194 195 196 197 198 199 200 201 202 203 204 205 206
                loss, acc, b_size = exe.run(
                    trainer_prog,
                    feed={"pixel": img_data,
                          "label": y_data},
                    fetch_list=[avg_cost, batch_acc, batch_size])
                iters += 1
                num_samples += len(data)
                train_pass_acc.add(value=acc, weight=b_size)
                print(
                    "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
                    % (pass_id, iters, loss, acc,
                       len(data) / (time.time() - ts))
                )  # The accuracy is the accumulation of batches, but not the current batch.
T
typhoonzero 已提交
207 208

            pass_elapsed = time.time() - start_time
F
fengjiayi 已提交
209
            pass_train_acc = train_pass_acc.eval()
T
typhoonzero 已提交
210 211 212 213
            pass_test_acc = test(exe)
            print(
                "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n"
                % (pass_id, num_samples / pass_elapsed, pass_train_acc,
T
typhoonzero 已提交
214
                   pass_test_acc))
T
typhoonzero 已提交
215 216 217 218 219 220 221 222

    if args.local:
        # Parameter initialization
        exe.run(fluid.default_startup_program())

        # data reader
        train_reader = paddle.batch(
            paddle.reader.shuffle(
T
typhoonzero 已提交
223 224
                paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
225 226 227 228 229 230 231 232 233
                buf_size=5120),
            batch_size=args.batch_size)
        test_reader = paddle.batch(
            paddle.dataset.cifar.test10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
            batch_size=args.batch_size)
        train_loop(exe, fluid.default_main_program())
    else:
        trainers = int(os.getenv("TRAINERS"))  # total trainer count
T
typhoonzero 已提交
234
        print("trainers total: ", trainers)
G
gongweibao 已提交
235

T
typhoonzero 已提交
236 237 238
        training_role = os.getenv(
            "TRAINING_ROLE",
            "TRAINER")  # get the training role: trainer/pserver
G
gongweibao 已提交
239

T
typhoonzero 已提交
240 241
        t = fluid.DistributeTranspiler()
        t.transpile(
T
typhoonzero 已提交
242 243
            optimize_ops,
            params_grads,
G
gongweibao 已提交
244 245
            trainer_id=args.task_index,
            pservers=args.ps_hosts,
T
typhoonzero 已提交
246
            trainers=trainers)
T
typhoonzero 已提交
247 248

        if training_role == "PSERVER":
G
gongweibao 已提交
249 250
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_INIT_PORT")
T
typhoonzero 已提交
251 252 253 254
            if not current_endpoint:
                print("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
255 256
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
T
typhoonzero 已提交
257 258 259 260 261 262 263 264 265
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            # Parameter initialization
            exe.run(fluid.default_startup_program())

            # data reader
            train_reader = paddle.batch(
                paddle.reader.shuffle(
T
typhoonzero 已提交
266 267
                    paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                    else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
268 269 270
                    buf_size=5120),
                batch_size=args.batch_size)
            test_reader = paddle.batch(
T
typhoonzero 已提交
271 272
                paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else
                paddle.dataset.flowers.test(),
T
typhoonzero 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
                batch_size=args.batch_size)

            trainer_prog = t.get_trainer_program()
            feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
            # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver
            exe.run(fluid.default_startup_program())
            train_loop(exe, trainer_prog)
        else:
            print("environment var TRAINER_ROLE should be TRAINER os PSERVER")


def print_arguments():
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    print_arguments()
    main()