dense.h 9.3 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>  // for sqrt in CPU and CUDA
18

T
tangwei12 已提交
19 20 21 22 23 24
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>

25
#include "gflags/gflags.h"
T
tangwei12 已提交
26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/distributed/common/utils.h"

namespace paddle {
namespace distributed {

// dense optimzier
// TODO(tangwei12) integrate with sparse optimzer later.
class DenseOptimizer {
 public:
  DenseOptimizer() {}
  explicit DenseOptimizer(const CommonAccessorParameter& accessor,
                          std::vector<std::vector<float>>* values) {}
38 39 40
  virtual void Update(const float* update_values,
                      size_t num,
                      int begin,
T
tangwei12 已提交
41
                      int end) = 0;
Z
zhaocaibei123 已提交
42
  virtual void SetGlobalLR(float* lr) { global_learning_rate_ = lr; }
43 44 45

 protected:
  float* global_learning_rate_;
T
tangwei12 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
};

// sum calc for dense tensor
class DSUM : public DenseOptimizer {
 public:
  explicit DSUM(const CommonAccessorParameter& accessor,
                std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
    }
  }

61 62 63
  void Update(const float* update_values,
              size_t num,
              int begin,
T
tangwei12 已提交
64 65
              int end) override {
    auto update_numel = end - begin;
66 67
    GetBlas<float>().VADD(
        update_numel, update_values + begin, param + begin, param + begin);
T
tangwei12 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  }

  float* param;
};

// sgd optimizer for dense tensor
class DSGD : public DenseOptimizer {
 public:
  explicit DSGD(const CommonAccessorParameter& accessor,
                std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
      }
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
    }
  }

89 90 91
  void Update(const float* update_values,
              size_t num,
              int begin,
T
tangwei12 已提交
92 93 94 95 96 97
              int end) override {
    auto update_numel = end - begin;
    std::vector<float> grads;
    grads.resize(update_numel);

    auto blas = GetBlas<float>();
98
    float lr = *(global_learning_rate_) * (*learning_rate);
T
tangwei12 已提交
99
    blas.VCOPY(update_numel, update_values + begin, grads.data());
100
    blas.SCAL(update_numel, lr, grads.data());
T
tangwei12 已提交
101 102 103 104 105 106 107 108
    blas.VSUB(update_numel, param + begin, grads.data(), param + begin);
  }

  float* learning_rate;
  float* param;
};

// adam optimizer for dense tensor
109
// TODO(zhaocaibei123): add CHECK(memory_dense_table.task_pool_size_) == 1
T
tangwei12 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
class DAdam : public DenseOptimizer {
 public:
  explicit DAdam(const CommonAccessorParameter& accessor,
                 std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
      }
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
      if (names[x] == "Moment1") {
        moment1 = (*values)[x].data();
      }
      if (names[x] == "Moment2") {
        moment2 = (*values)[x].data();
      }
      if (names[x] == "Beta1Pow") {
        beta1_pow = (*values)[x].data();
      }
      if (names[x] == "Beta2Pow") {
        beta2_pow = (*values)[x].data();
      }
    }

    // add attr later
    beta1 = 0.9;
    beta2 = 0.999;
    epsilon = 1.0e-8;
  }

142
  // make sure memory_dense_table.task_pool_size_ == 1;
143
  // otherwise, task_pool_size_ times beta1_pow/beta2_pow multiplication
144 145 146
  void Update(const float* update_values,
              size_t num,
              int begin,
T
tangwei12 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
              int end) override {
    auto update_numel = end - begin;
    std::vector<float> grad, grad2, tmp;
    grad.resize(update_numel);
    grad2.resize(update_numel);
    tmp.resize(update_numel);

    auto blas = GetBlas<float>();
    blas.VCOPY(update_numel, update_values + begin, grad.data());
    blas.VCOPY(update_numel, update_values + begin, grad2.data());

    blas.SCAL(update_numel, 1 - beta1, grad.data());
    blas.VSQUARE(update_numel, grad2.data(), grad2.data());
    blas.SCAL(update_numel, 1 - beta2, grad2.data());

    blas.SCAL(update_numel, beta1, moment1 + begin);
    blas.VADD(update_numel, moment1 + begin, grad.data(), moment1 + begin);
    blas.SCAL(update_numel, beta2, moment2 + begin);
    blas.VADD(update_numel, moment2 + begin, grad2.data(), moment2 + begin);

    beta1_pow[0] = beta1_pow[0] * beta1;
    beta2_pow[0] = beta2_pow[0] * beta2;

170
    float lr_ = *(global_learning_rate_)*learning_rate[0];
T
tangwei12 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    lr_ *= sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]);

    float* tmp_ = tmp.data();
    float eps_ = epsilon * sqrt(1 - beta2_pow[0]);

    SQRT<float>(update_numel, moment2 + begin, tmp_);
    ADD<float>(update_numel, tmp_, eps_, tmp_);

    blas.VDIV(update_numel, moment1 + begin, tmp_, tmp_);
    blas.SCAL(update_numel, lr_, tmp_);
    blas.VSUB(update_numel, param + begin, tmp_, param + begin);
  }

  float* learning_rate;

  float* param;
  float* moment1;
  float* moment2;

  float* beta1_pow;
  float* beta2_pow;

  float beta1;
  float beta2;
  float epsilon;
};

198 199 200 201 202 203 204 205 206 207
// adam optimizer for dense tensor
class DAdamD2Sum : public DenseOptimizer {
 public:
  explicit DAdamD2Sum(const CommonAccessorParameter& accessor,
                      std::vector<std::vector<float>>* values) {
    lr_hardcode = 5e-6;
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
208
      } else if (names[x] == "Param") {
209
        param = (*values)[x].data();
210
      } else if (names[x] == "Moment") {
211
        mom_velocity = (*values)[x].data();
212
      } else if (names[x] == "G2Sum") {
213
        ada_g2sum = (*values)[x].data();
214
      } else if (names[x] == "D2Sum") {
215
        ada_d2sum = (*values)[x].data();
216
      } else if (names[x] == "MomentDecayRate") {
217
        mom_decay_rate = (*values)[x].data();
218
      } else if (names[x] == "AdaDecayRate") {
219
        ada_decay_rate = (*values)[x].data();
220
      } else if (names[x] == "AdaEpsilon") {
221 222 223 224 225
        ada_epsilon = (*values)[x].data();
      }
    }
  }

226 227 228
  void Update(const float* update_values,
              size_t num,
              int begin,
229 230
              int end) override {
    auto update_numel = end - begin;
231 232
    Eigen::Map<Eigen::MatrixXf> mat_ada_g2sum(
        ada_g2sum + begin, 1, update_numel);
233

234 235 236 237
    Eigen::Map<Eigen::MatrixXf> mat_ada_d2sum(
        ada_d2sum + begin, 1, update_numel);
    Eigen::Map<Eigen::MatrixXf> mat_mom_velocity(
        mom_velocity + begin, 1, update_numel);
238 239
    Eigen::Map<Eigen::MatrixXf> mat_w(param + begin, 1, update_numel);

240 241
    Eigen::Map<const Eigen::MatrixXf> mat_grad(
        update_values + begin, 1, update_numel);
242 243 244 245 246 247 248 249

    mat_ada_d2sum = (mat_ada_d2sum * ada_decay_rate[0]).array() + 1;
    mat_ada_g2sum =
        (mat_ada_g2sum * ada_decay_rate[0]) + mat_grad.cwiseProduct(mat_grad);

    thread_local std::vector<float> scale_vec;
    scale_vec.resize(update_numel);
    Eigen::Map<Eigen::MatrixXf> scale(scale_vec.data(), 1, update_numel);
250 251
    memcpy(
        scale_vec.data(), mat_ada_d2sum.data(), sizeof(float) * update_numel);
252 253 254 255 256 257 258 259

    scale = scale.array() * ada_epsilon[0];
    scale = (mat_ada_d2sum + scale).cwiseQuotient(mat_ada_g2sum + scale);
    scale = scale.cwiseSqrt();
    mat_mom_velocity =
        (mat_mom_velocity - mat_grad) * mom_decay_rate[0] + mat_grad;

    mat_w -= learning_rate[0] * mat_mom_velocity.cwiseProduct(scale);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  }

  float* learning_rate;
  float lr_hardcode;

  float* param;
  float* mom_velocity;
  float* ada_g2sum;
  float* ada_d2sum;

  float* mom_decay_rate;
  float* ada_decay_rate;
  float* ada_epsilon;
};

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
// for data_norm
class DSummary : public DenseOptimizer {
 public:
  explicit DSummary(const CommonAccessorParameter& accessor,
                    std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "Param") {
        param = (*values)[x].data();
      } else if (names[x] == "SummaryDecayRate") {
        summary_decay_rate = (*values)[x].data();
      }
    }
  }

290 291 292
  void Update(const float* update_values,
              size_t num,
              int begin,
293 294 295
              int end) override {
    auto update_numel = end - begin;
    Eigen::Map<Eigen::MatrixXf> mat_w(param + begin, 1, update_numel);
296 297
    Eigen::Map<const Eigen::MatrixXf> mat_grad(
        update_values + begin, 1, update_numel);
298 299 300 301
    mat_w = mat_w * summary_decay_rate_d + mat_grad;
  }

  float* summary_decay_rate;
Z
zhaocaibei123 已提交
302
  double summary_decay_rate_d = 0.9999999;
303 304 305
  float* param;
};

T
tangwei12 已提交
306 307
}  // namespace distributed
}  // namespace paddle