dense.h 9.3 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>  // for sqrt in CPU and CUDA
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>
23
#include "gflags/gflags.h"
T
tangwei12 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36

#include "paddle/fluid/distributed/common/utils.h"

namespace paddle {
namespace distributed {

// dense optimzier
// TODO(tangwei12) integrate with sparse optimzer later.
class DenseOptimizer {
 public:
  DenseOptimizer() {}
  explicit DenseOptimizer(const CommonAccessorParameter& accessor,
                          std::vector<std::vector<float>>* values) {}
Z
zhaocaibei123 已提交
37
  virtual void Update(const float* update_values, size_t num, int begin,
T
tangwei12 已提交
38
                      int end) = 0;
Z
zhaocaibei123 已提交
39
  virtual void SetGlobalLR(float* lr) { global_learning_rate_ = lr; }
40 41 42

 protected:
  float* global_learning_rate_;
T
tangwei12 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
};

// sum calc for dense tensor
class DSUM : public DenseOptimizer {
 public:
  explicit DSUM(const CommonAccessorParameter& accessor,
                std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
    }
  }

Z
zhaocaibei123 已提交
58
  void Update(const float* update_values, size_t num, int begin,
T
tangwei12 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
              int end) override {
    auto update_numel = end - begin;
    GetBlas<float>().VADD(update_numel, update_values + begin, param + begin,
                          param + begin);
  }

  float* param;
};

// sgd optimizer for dense tensor
class DSGD : public DenseOptimizer {
 public:
  explicit DSGD(const CommonAccessorParameter& accessor,
                std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
      }
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
    }
  }

Z
zhaocaibei123 已提交
84
  void Update(const float* update_values, size_t num, int begin,
T
tangwei12 已提交
85 86 87 88 89 90
              int end) override {
    auto update_numel = end - begin;
    std::vector<float> grads;
    grads.resize(update_numel);

    auto blas = GetBlas<float>();
91
    float lr = *(global_learning_rate_) * (*learning_rate);
T
tangwei12 已提交
92
    blas.VCOPY(update_numel, update_values + begin, grads.data());
93
    blas.SCAL(update_numel, lr, grads.data());
T
tangwei12 已提交
94 95 96 97 98 99 100 101
    blas.VSUB(update_numel, param + begin, grads.data(), param + begin);
  }

  float* learning_rate;
  float* param;
};

// adam optimizer for dense tensor
102
// TODO(zhaocaibei123): add CHECK(common_dense_table.task_pool_size_) == 1
T
tangwei12 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
class DAdam : public DenseOptimizer {
 public:
  explicit DAdam(const CommonAccessorParameter& accessor,
                 std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
      }
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
      if (names[x] == "Moment1") {
        moment1 = (*values)[x].data();
      }
      if (names[x] == "Moment2") {
        moment2 = (*values)[x].data();
      }
      if (names[x] == "Beta1Pow") {
        beta1_pow = (*values)[x].data();
      }
      if (names[x] == "Beta2Pow") {
        beta2_pow = (*values)[x].data();
      }
    }

    // add attr later
    beta1 = 0.9;
    beta2 = 0.999;
    epsilon = 1.0e-8;
  }

135 136
  // make sure common_dense_table.task_pool_size_ == 1;
  // otherwise, task_pool_size_ times beta1_pow/beta2_pow multiplication
Z
zhaocaibei123 已提交
137
  void Update(const float* update_values, size_t num, int begin,
T
tangwei12 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
              int end) override {
    auto update_numel = end - begin;
    std::vector<float> grad, grad2, tmp;
    grad.resize(update_numel);
    grad2.resize(update_numel);
    tmp.resize(update_numel);

    auto blas = GetBlas<float>();
    blas.VCOPY(update_numel, update_values + begin, grad.data());
    blas.VCOPY(update_numel, update_values + begin, grad2.data());

    blas.SCAL(update_numel, 1 - beta1, grad.data());
    blas.VSQUARE(update_numel, grad2.data(), grad2.data());
    blas.SCAL(update_numel, 1 - beta2, grad2.data());

    blas.SCAL(update_numel, beta1, moment1 + begin);
    blas.VADD(update_numel, moment1 + begin, grad.data(), moment1 + begin);
    blas.SCAL(update_numel, beta2, moment2 + begin);
    blas.VADD(update_numel, moment2 + begin, grad2.data(), moment2 + begin);

    beta1_pow[0] = beta1_pow[0] * beta1;
    beta2_pow[0] = beta2_pow[0] * beta2;

161
    float lr_ = *(global_learning_rate_)*learning_rate[0];
T
tangwei12 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    lr_ *= sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]);

    float* tmp_ = tmp.data();
    float eps_ = epsilon * sqrt(1 - beta2_pow[0]);

    SQRT<float>(update_numel, moment2 + begin, tmp_);
    ADD<float>(update_numel, tmp_, eps_, tmp_);

    blas.VDIV(update_numel, moment1 + begin, tmp_, tmp_);
    blas.SCAL(update_numel, lr_, tmp_);
    blas.VSUB(update_numel, param + begin, tmp_, param + begin);
  }

  float* learning_rate;

  float* param;
  float* moment1;
  float* moment2;

  float* beta1_pow;
  float* beta2_pow;

  float beta1;
  float beta2;
  float epsilon;
};

189 190 191 192 193 194 195 196 197 198
// adam optimizer for dense tensor
class DAdamD2Sum : public DenseOptimizer {
 public:
  explicit DAdamD2Sum(const CommonAccessorParameter& accessor,
                      std::vector<std::vector<float>>* values) {
    lr_hardcode = 5e-6;
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
199
      } else if (names[x] == "Param") {
200
        param = (*values)[x].data();
201
      } else if (names[x] == "Moment") {
202
        mom_velocity = (*values)[x].data();
203
      } else if (names[x] == "G2Sum") {
204
        ada_g2sum = (*values)[x].data();
205
      } else if (names[x] == "D2Sum") {
206
        ada_d2sum = (*values)[x].data();
207
      } else if (names[x] == "MomentDecayRate") {
208
        mom_decay_rate = (*values)[x].data();
209
      } else if (names[x] == "AdaDecayRate") {
210
        ada_decay_rate = (*values)[x].data();
211
      } else if (names[x] == "AdaEpsilon") {
212 213 214 215 216
        ada_epsilon = (*values)[x].data();
      }
    }
  }

Z
zhaocaibei123 已提交
217
  void Update(const float* update_values, size_t num, int begin,
218 219
              int end) override {
    auto update_numel = end - begin;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    Eigen::Map<Eigen::MatrixXf> mat_ada_g2sum(ada_g2sum + begin, 1,
                                              update_numel);

    Eigen::Map<Eigen::MatrixXf> mat_ada_d2sum(ada_d2sum + begin, 1,
                                              update_numel);
    Eigen::Map<Eigen::MatrixXf> mat_mom_velocity(mom_velocity + begin, 1,
                                                 update_numel);
    Eigen::Map<Eigen::MatrixXf> mat_w(param + begin, 1, update_numel);

    Eigen::Map<const Eigen::MatrixXf> mat_grad(update_values + begin, 1,
                                               update_numel);

    mat_ada_d2sum = (mat_ada_d2sum * ada_decay_rate[0]).array() + 1;
    mat_ada_g2sum =
        (mat_ada_g2sum * ada_decay_rate[0]) + mat_grad.cwiseProduct(mat_grad);

    thread_local std::vector<float> scale_vec;
    scale_vec.resize(update_numel);
    Eigen::Map<Eigen::MatrixXf> scale(scale_vec.data(), 1, update_numel);
    memcpy(scale_vec.data(), mat_ada_d2sum.data(),
           sizeof(float) * update_numel);

    scale = scale.array() * ada_epsilon[0];
    scale = (mat_ada_d2sum + scale).cwiseQuotient(mat_ada_g2sum + scale);
    scale = scale.cwiseSqrt();
    mat_mom_velocity =
        (mat_mom_velocity - mat_grad) * mom_decay_rate[0] + mat_grad;

    mat_w -= learning_rate[0] * mat_mom_velocity.cwiseProduct(scale);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  }

  float* learning_rate;
  float lr_hardcode;

  float* param;
  float* mom_velocity;
  float* ada_g2sum;
  float* ada_d2sum;

  float* mom_decay_rate;
  float* ada_decay_rate;
  float* ada_epsilon;
};

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
// for data_norm
class DSummary : public DenseOptimizer {
 public:
  explicit DSummary(const CommonAccessorParameter& accessor,
                    std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "Param") {
        param = (*values)[x].data();
      } else if (names[x] == "SummaryDecayRate") {
        summary_decay_rate = (*values)[x].data();
      }
    }
  }

Z
zhaocaibei123 已提交
279
  void Update(const float* update_values, size_t num, int begin,
280 281 282 283 284 285 286 287 288 289 290 291 292
              int end) override {
    auto update_numel = end - begin;
    Eigen::Map<Eigen::MatrixXf> mat_w(param + begin, 1, update_numel);
    Eigen::Map<const Eigen::MatrixXf> mat_grad(update_values + begin, 1,
                                               update_numel);
    mat_w = mat_w * summary_decay_rate_d + mat_grad;
  }

  float* summary_decay_rate;
  double summary_decay_rate_d = 0.999999;
  float* param;
};

T
tangwei12 已提交
293 294
}  // namespace distributed
}  // namespace paddle