test_nn_grad.py 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

18
import paddle
19 20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
24

25
paddle.enable_static()
26 27


28
class TestSliceOpDoubleGradCheck(unittest.TestCase):
29
    @prog_scope()
30 31 32
    def func(self, place):
        self.config()

33 34 35 36 37 38
        out = fluid.layers.slice(
            self.inputs, axes=self.axes, starts=self.starts, ends=self.ends
        )
        gradient_checker.double_grad_check(
            [self.inputs], out, x_init=self.x_arr, place=place
        )
39 40 41 42 43 44

    def config(self):
        self.starts = [1, 0, -1]
        self.ends = [3, 3, 6]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64")
45 46 47
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 4, 5, 2], name='x'
        )
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.func(place)


class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck):
    def config(self):
        self.starts = [1, -1, 1]
        self.ends = [3, 3, 3]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 3, 3]).astype("float64")
63 64 65
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 3, 3], name='x3'
        )
66 67


L
lvmengsi 已提交
68 69 70 71 72 73 74 75 76 77 78 79
class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_mean(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

80 81 82
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
L
lvmengsi 已提交
83 84 85 86 87 88 89 90 91

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


92 93 94 95 96 97 98 99 100 101 102 103
class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_sum(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

104 105 106
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
107

108 109 110 111 112 113 114 115
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


116 117 118 119 120 121 122 123 124 125
class TestReshapeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        new_shape = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
126
        out = paddle.reshape(x, new_shape)
127 128
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

129 130 131
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
132 133 134 135 136 137 138 139 140

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


141
class TestTileDoubleGradCheck(unittest.TestCase):
142 143 144
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [4, 9])

145 146 147 148 149 150 151 152 153 154 155 156
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        repeat_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.tile(x, repeat_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

157 158 159 160 161 162
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.tile_wrapper, [x], out, x_init=x_arr, place=place
        )
163 164 165 166 167 168 169 170 171 172

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandV2DoubleGradCheck(unittest.TestCase):
173 174 175
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [4, 12])

176 177 178 179 180 181 182 183 184 185 186 187
    @prog_scope()
    def func(self, place):
        x_shape = [1, 12]
        new_shape = [4, 12]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.expand(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

188 189 190 191 192 193
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.expand_wrapper, [x], out, x_init=x_arr, place=place
        )
194 195 196 197 198 199 200 201 202

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


203
class TestSqueezeDoubleGradCheck(unittest.TestCase):
204 205 206 207
    def squeeze_warpper(self, x):
        axes = [0, 2]
        return paddle.squeeze(x[0], axes)

208 209 210 211 212 213 214 215 216 217 218 219
    @prog_scope()
    def func(self, place):
        x_shape = [1, 3, 1, 40]
        axes = [0, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.squeeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

220 221 222 223 224 225
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.squeeze_warpper, [x], out, x_init=x_arr, place=place
        )
226 227 228 229 230 231 232 233 234 235

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
236 237 238 239
    def unsqueeze_wrapper(self, x):
        axes = [1, 2]
        return paddle.unsqueeze(x[0], axes)

240 241 242 243 244 245 246 247 248 249 250 251
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        axes = [1, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.unsqueeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

252 253 254 255 256 257
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.unsqueeze_wrapper, [x], out, x_init=x_arr, place=place
        )
258 259 260 261 262 263 264 265 266

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qingqing01 已提交
267
class TestClipDoubleGradCheck(unittest.TestCase):
268
    def clip_wrapper(self, x):
269
        return paddle.clip(x[0], min=-1.0, max=1.0)
270

Q
qingqing01 已提交
271 272 273 274 275 276 277
    @prog_scope()
    def func(self, place):
        x_shape = [2, 4, 10]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
278 279
        out = paddle.clip(x, min=-1.0, max=1.0)
        x_arr = np.random.uniform(-5.0, 5.0, x_shape).astype(dtype)
Q
qingqing01 已提交
280 281

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)
282 283 284
        gradient_checker.double_grad_check_for_dygraph(
            self.clip_wrapper, [x], out, x_init=x_arr, place=place
        )
Q
qingqing01 已提交
285 286 287 288 289 290 291 292 293

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
class TestTransposeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        perm = [1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeDoubleGradCheckCase1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        perm = [0, 2, 3, 1]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
ceci3 已提交
338
class TestConstantPadDoubleGradCheck(unittest.TestCase):
339 340 341 342
    def pad_wrapper(self, x):
        pad = [1, 1, 1, 1]
        return paddle.nn.functional.pad(x[0], pad)

C
ceci3 已提交
343 344 345 346 347 348 349 350 351 352 353 354
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

355 356 357 358 359 360
        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pad_wrapper, [x], out, x_init=x_arr, place=place
        )
C
ceci3 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConstantPadDoubleGradCheckCase1(TestConstantPadDoubleGradCheck):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 0, 1, 0, 1, 0, 1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)


class TestConcatDoubleGradCheck(unittest.TestCase):
386 387 388
    def concat_wrapper(self, x):
        return paddle.concat(x, axis=0)

C
ceci3 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        dtype = np.float64

        x1 = layers.data('x', x_shape, False, dtype)
        x2 = layers.data('x', x_shape, False, dtype)
        x1.persistable = True
        x2.persistable = True
        out = paddle.concat([x1, x2], axis=0)
        x2_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        x1_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

403 404 405 406 407 408 409 410 411 412
        gradient_checker.double_grad_check(
            [x1, x2], out, x_init=[x1_arr, x2_arr], place=place
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.concat_wrapper,
            [x1, x2],
            out,
            x_init=[x1_arr, x2_arr],
            place=place,
        )
C
ceci3 已提交
413 414 415 416 417 418 419 420 421

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


422 423 424
class TestAvgPool2DDoubleGradCheckCase1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
425 426 427 428 429 430
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32",
        )
431 432 433 434 435

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=2, pool_type="avg")
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

436 437 438
        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05
        )
439 440 441 442 443 444 445 446 447 448

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase2(unittest.TestCase):
449
    def pool2d_wrapper(self, x):
450 451 452
        return paddle.nn.functional.avg_pool2d(
            x[0], kernel_size=2, data_format="NHWC"
        )
453

454 455
    @prog_scope()
    def func(self, place):
456 457 458 459 460 461
        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32",
        )
462 463

        input_NHWC.persistable = True
464 465 466
        y = paddle.nn.functional.avg_pool2d(
            input_NHWC, kernel_size=2, data_format="NHWC"
        )
467 468
        x_arr = np.random.uniform(-1, 1, [2, 5, 5, 3]).astype(np.float32)

469 470 471
        gradient_checker.double_grad_check(
            [input_NHWC], y, x_init=x_arr, place=place, eps=0.05
        )
472

473 474 475
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NHWC], y, x_init=x_arr, place=place
        )
476

477 478 479 480 481 482 483 484 485
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase3(unittest.TestCase):
486
    def pool2d_wrapper(self, x):
487 488 489
        return paddle.nn.functional.avg_pool2d(
            x[0], kernel_size=2, padding=[1, 1]
        )
490

491 492
    @prog_scope()
    def func(self, place):
493 494 495 496 497 498
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32",
        )
499 500

        input_NCHW.persistable = True
501 502 503
        y = paddle.nn.functional.avg_pool2d(
            input_NCHW, kernel_size=2, padding=[1, 1]
        )
504 505
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

506 507 508 509 510 511
        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NCHW], y, x_init=x_arr, place=place
        )
512 513 514 515 516 517 518 519 520 521

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase4(unittest.TestCase):
522 523 524
    def pool2d_wrapper(self, x):
        return paddle.nn.functional.avg_pool2d(x[0], kernel_size=[4, 4])

525 526
    @prog_scope()
    def func(self, place):
527 528 529 530 531 532
        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32",
        )
533 534 535

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=[4, 4], pool_type="avg")
536
        y = paddle.nn.functional.avg_pool2d(input_NCHW, kernel_size=[4, 4])
537 538
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

539 540 541 542 543 544
        gradient_checker.double_grad_check(
            [input_NCHW], y, x_init=x_arr, place=place, eps=0.05
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pool2d_wrapper, [input_NCHW], y, x_init=x_arr, place=place
        )
545 546 547 548 549 550 551 552 553

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


554 555
if __name__ == "__main__":
    unittest.main()