test_nn_grad.py 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

18
import paddle
19 20 21 22 23
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
24

25
paddle.enable_static()
26 27


28
class TestSliceOpDoubleGradCheck(unittest.TestCase):
29

30
    @prog_scope()
31 32 33
    def func(self, place):
        self.config()

34 35 36 37 38 39 40 41
        out = fluid.layers.slice(self.inputs,
                                 axes=self.axes,
                                 starts=self.starts,
                                 ends=self.ends)
        gradient_checker.double_grad_check([self.inputs],
                                           out,
                                           x_init=self.x_arr,
                                           place=place)
42 43 44 45 46 47

    def config(self):
        self.starts = [1, 0, -1]
        self.ends = [3, 3, 6]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64")
48 49 50
        self.inputs = layers.create_parameter(dtype="float64",
                                              shape=[3, 4, 5, 2],
                                              name='x')
51 52 53 54 55 56 57 58 59 60

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.func(place)


class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck):
61

62 63 64 65 66
    def config(self):
        self.starts = [1, -1, 1]
        self.ends = [3, 3, 3]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 3, 3]).astype("float64")
67 68 69
        self.inputs = layers.create_parameter(dtype="float64",
                                              shape=[3, 3, 3],
                                              name='x3')
70 71


L
lvmengsi 已提交
72
class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
73

L
lvmengsi 已提交
74 75 76 77 78 79 80 81 82 83 84
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_mean(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

85 86 87 88 89
        gradient_checker.double_grad_check([x],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
L
lvmengsi 已提交
90 91 92 93 94 95 96 97 98

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


99
class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase):
100

101 102 103 104 105 106 107 108 109 110 111
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_sum(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

112 113 114 115 116
        gradient_checker.double_grad_check([x],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
117

118 119 120 121 122 123 124 125
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


126
class TestReshapeDoubleGradCheck(unittest.TestCase):
127

L
lilong12 已提交
128 129 130 131 132 133 134 135 136 137 138 139
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        expand_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.expand(x, expand_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

140 141 142 143 144
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
L
lilong12 已提交
145 146 147 148 149 150 151 152 153 154

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandDoubleGradCheck(unittest.TestCase):
155

156 157 158 159 160 161 162 163 164 165 166 167
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        new_shape = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.reshape(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

168 169 170 171 172
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
173 174 175 176 177 178 179 180 181

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


182
class TestTileDoubleGradCheck(unittest.TestCase):
183

184 185 186
    def tile_wrapper(self, x):
        return paddle.tile(x[0], [4, 9])

187 188 189 190 191 192 193 194 195 196 197 198
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        repeat_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.tile(x, repeat_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

199 200 201 202 203 204 205 206 207
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.tile_wrapper, [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
208 209 210 211 212 213 214 215 216 217

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandV2DoubleGradCheck(unittest.TestCase):
218

219 220 221
    def expand_wrapper(self, x):
        return paddle.expand(x[0], [4, 12])

222 223 224 225 226 227 228 229 230 231 232 233
    @prog_scope()
    def func(self, place):
        x_shape = [1, 12]
        new_shape = [4, 12]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.expand(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

234 235 236 237 238 239 240 241 242
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.expand_wrapper, [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
243 244 245 246 247 248 249 250 251

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


252
class TestSqueezeDoubleGradCheck(unittest.TestCase):
253

254 255 256 257
    def squeeze_warpper(self, x):
        axes = [0, 2]
        return paddle.squeeze(x[0], axes)

258 259 260 261 262 263 264 265 266 267 268 269
    @prog_scope()
    def func(self, place):
        x_shape = [1, 3, 1, 40]
        axes = [0, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.squeeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

270 271 272 273 274 275 276 277 278 279
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.squeeze_warpper,
                                                       [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
280 281 282 283 284 285 286 287 288 289

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
290

291 292 293 294
    def unsqueeze_wrapper(self, x):
        axes = [1, 2]
        return paddle.unsqueeze(x[0], axes)

295 296 297 298 299 300 301 302 303 304 305 306
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        axes = [1, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.unsqueeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

307 308 309 310 311 312 313 314 315 316
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.unsqueeze_wrapper,
                                                       [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
317 318 319 320 321 322 323 324 325

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qingqing01 已提交
326
class TestClipDoubleGradCheck(unittest.TestCase):
327

328 329 330
    def clip_wrapper(self, x):
        return paddle.clip(x[0], min=-1., max=1.)

Q
qingqing01 已提交
331 332 333 334 335 336 337 338 339 340 341
    @prog_scope()
    def func(self, place):
        x_shape = [2, 4, 10]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.clip(x, min=-1., max=1.)
        x_arr = np.random.uniform(-5., 5., x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)
342 343 344 345
        gradient_checker.double_grad_check_for_dygraph(self.clip_wrapper, [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
Q
qingqing01 已提交
346 347 348 349 350 351 352 353 354

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


355
class TestTransposeDoubleGradCheck(unittest.TestCase):
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        perm = [1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeDoubleGradCheckCase1(unittest.TestCase):
379

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        perm = [0, 2, 3, 1]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
ceci3 已提交
401
class TestConstantPadDoubleGradCheck(unittest.TestCase):
402

403 404 405 406
    def pad_wrapper(self, x):
        pad = [1, 1, 1, 1]
        return paddle.nn.functional.pad(x[0], pad)

C
ceci3 已提交
407 408 409 410 411 412 413 414 415 416 417 418
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

419 420 421 422 423 424 425 426 427
        gradient_checker.double_grad_check([x],
                                           out,
                                           x_init=x_arr,
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.pad_wrapper, [x],
                                                       out,
                                                       x_init=x_arr,
                                                       place=place)
C
ceci3 已提交
428 429 430 431 432 433 434 435 436 437

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConstantPadDoubleGradCheckCase1(TestConstantPadDoubleGradCheck):
438

C
ceci3 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 0, 1, 0, 1, 0, 1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)


class TestConcatDoubleGradCheck(unittest.TestCase):
454

455 456 457
    def concat_wrapper(self, x):
        return paddle.concat(x, axis=0)

C
ceci3 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        dtype = np.float64

        x1 = layers.data('x', x_shape, False, dtype)
        x2 = layers.data('x', x_shape, False, dtype)
        x1.persistable = True
        x2.persistable = True
        out = paddle.concat([x1, x2], axis=0)
        x2_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        x1_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

472 473 474 475 476 477 478 479 480
        gradient_checker.double_grad_check([x1, x2],
                                           out,
                                           x_init=[x1_arr, x2_arr],
                                           place=place)
        gradient_checker.double_grad_check_for_dygraph(self.concat_wrapper,
                                                       [x1, x2],
                                                       out,
                                                       x_init=[x1_arr, x2_arr],
                                                       place=place)
C
ceci3 已提交
481 482 483 484 485 486 487 488 489

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


490
class TestAvgPool2DDoubleGradCheckCase1(unittest.TestCase):
491

492 493
    @prog_scope()
    def func(self, place):
494 495 496 497
        input_NCHW = fluid.layers.data(name="input_NCHW",
                                       shape=[2, 3, 5, 5],
                                       append_batch_size=False,
                                       dtype="float32")
498 499 500 501 502

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=2, pool_type="avg")
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

503 504 505 506 507
        gradient_checker.double_grad_check([input_NCHW],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=0.05)
508 509 510 511 512 513 514 515 516 517

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase2(unittest.TestCase):
518

519
    def pool2d_wrapper(self, x):
520 521 522
        return paddle.nn.functional.avg_pool2d(x[0],
                                               kernel_size=2,
                                               data_format="NHWC")
523

524 525
    @prog_scope()
    def func(self, place):
526 527 528 529
        input_NHWC = fluid.layers.data(name="input_NHWC",
                                       shape=[2, 5, 5, 3],
                                       append_batch_size=False,
                                       dtype="float32")
530 531

        input_NHWC.persistable = True
532 533 534
        y = paddle.nn.functional.avg_pool2d(input_NHWC,
                                            kernel_size=2,
                                            data_format="NHWC")
535 536
        x_arr = np.random.uniform(-1, 1, [2, 5, 5, 3]).astype(np.float32)

537 538 539 540 541
        gradient_checker.double_grad_check([input_NHWC],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=0.05)
542

543 544 545 546 547
        gradient_checker.double_grad_check_for_dygraph(self.pool2d_wrapper,
                                                       [input_NHWC],
                                                       y,
                                                       x_init=x_arr,
                                                       place=place)
548

549 550 551 552 553 554 555 556 557
    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase3(unittest.TestCase):
558

559
    def pool2d_wrapper(self, x):
560 561 562
        return paddle.nn.functional.avg_pool2d(x[0],
                                               kernel_size=2,
                                               padding=[1, 1])
563

564 565
    @prog_scope()
    def func(self, place):
566 567 568 569
        input_NCHW = fluid.layers.data(name="input_NCHW",
                                       shape=[2, 3, 5, 5],
                                       append_batch_size=False,
                                       dtype="float32")
570 571

        input_NCHW.persistable = True
572 573 574
        y = paddle.nn.functional.avg_pool2d(input_NCHW,
                                            kernel_size=2,
                                            padding=[1, 1])
575 576
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

577 578 579 580 581 582 583 584 585 586
        gradient_checker.double_grad_check([input_NCHW],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=0.05)
        gradient_checker.double_grad_check_for_dygraph(self.pool2d_wrapper,
                                                       [input_NCHW],
                                                       y,
                                                       x_init=x_arr,
                                                       place=place)
587 588 589 590 591 592 593 594 595 596

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAvgPool2DDoubleGradCheckCase4(unittest.TestCase):
597

598 599 600
    def pool2d_wrapper(self, x):
        return paddle.nn.functional.avg_pool2d(x[0], kernel_size=[4, 4])

601 602
    @prog_scope()
    def func(self, place):
603 604 605 606
        input_NCHW = fluid.layers.data(name="input_NCHW",
                                       shape=[2, 3, 5, 5],
                                       append_batch_size=False,
                                       dtype="float32")
607 608 609

        input_NCHW.persistable = True
        y = layers.pool2d(input_NCHW, pool_size=[4, 4], pool_type="avg")
610
        y = paddle.nn.functional.avg_pool2d(input_NCHW, kernel_size=[4, 4])
611 612
        x_arr = np.random.uniform(-1, 1, [2, 3, 5, 5]).astype(np.float32)

613 614 615 616 617 618 619 620 621 622
        gradient_checker.double_grad_check([input_NCHW],
                                           y,
                                           x_init=x_arr,
                                           place=place,
                                           eps=0.05)
        gradient_checker.double_grad_check_for_dygraph(self.pool2d_wrapper,
                                                       [input_NCHW],
                                                       y,
                                                       x_init=x_arr,
                                                       place=place)
623 624 625 626 627 628 629 630 631

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


632 633
if __name__ == "__main__":
    unittest.main()