nn.py 158.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
28 29 30 31 32 33 34 35 36 37 38 39 40 41
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'batch_norm',
    'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'lstm_unit',
    'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
    'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
    'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
    'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
    'beam_search', 'row_conv', 'multiplex', 'layer_norm',
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'lod_reset', 'lrn', 'pad',
    'label_smooth', 'roi_pool', 'dice_loss', 'image_resize',
    'image_resize_short', 'resize_bilinear', 'gather', 'random_crop', 'mean_iou'
Y
Yu Yang 已提交
42 43 44 45 46 47 48 49
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
50
       use_mkldnn=False,
Y
Yu Yang 已提交
51
       act=None,
J
Jacek Czaja 已提交
52
       is_test=False,
53
       name=None):
Y
Yu Yang 已提交
54
    """
55
    **Fully Connected Layer**
Y
Yu Yang 已提交
56

C
caoying03 已提交
57
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
58 59 60 61 62 63
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
64
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
65

C
caoying03 已提交
66
    This process can be formulated as follows:
67 68 69

    .. math::

70
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
71 72 73

    In the above equation:

C
caoying03 已提交
74 75 76 77
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
78
    * :math:`Act`: The activation function.
C
caoying03 已提交
79
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
80 81

    Args:
R
ranqiu 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
99
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
100 101
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
102
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
103

104
    Returns:
R
ranqiu 已提交
105
        A tensor variable storing the transformation result.
106 107

    Raises:
C
caoying03 已提交
108
        ValueError: If rank of the input tensor is less than 2.
109 110 111 112

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
113 114
          data = fluid.layers.data(
              name="data", shape=[32, 32], dtype="float32")
115
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
116
    """
C
caoying03 已提交
117

C
caoying03 已提交
118
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
119 120 121 122

    dtype = helper.input_dtype()

    mul_results = []
123 124
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
125 126 127
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
128

Y
Yu Yang 已提交
129
        w = helper.create_parameter(
130 131
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
132
        helper.append_op(
133 134 135
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
136
            outputs={"Out": tmp},
M
mozga-intel 已提交
137 138
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
139 140 141 142
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
143
    else:
144 145 146 147 148 149 150
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
151 152


153 154 155
def embedding(input,
              size,
              is_sparse=False,
156
              is_distributed=False,
157 158 159
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
160
    """
161 162
    **Embedding Layer**

163
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
164 165
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
166 167 168

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
169 170

    Args:
171 172 173 174 175
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
176
        is_distributed (bool): Whether to run lookup table from remote parameter server.
177 178
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
179 180
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
181 182
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
183
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
184

185 186 187
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
188

189 190
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
191

C
chengduoZH 已提交
192
          dict_size = len(dataset.ids)
193
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
194
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
195 196 197 198 199 200
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
201 202
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
203 204 205 206 207
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
208 209 210 211 212
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
213 214 215 216 217
    return tmp


def dynamic_lstm(input,
                 size,
218 219
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
220 221 222 223 224 225 226
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
227 228
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
229 230 231 232 233 234
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
235
    .. math::
Y
Yibing Liu 已提交
236

237
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
238

239
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
240

241
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
242

243 244 245
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
246

Y
Yibing Liu 已提交
247
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
248

249
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
250
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
251 252 253
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
254
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
255 256
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
257 258
    all of which have the same size as the cell output activation vector :math:`h`.

259 260 261 262
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
263 264 265
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
266 267 268
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
269 270 271
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
272 273

    Args:
274 275 276 277
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
278 279
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
280 281 282 283 284 285 286
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

287
        param_attr(ParamAttr|None): The parameter attribute for the learnable
288
                               hidden-hidden weights.
Y
Yibing Liu 已提交
289 290 291

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
292 293 294
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
295 296 297
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
298

299
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
300
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
301
                                - The shape is (1 x 4D).
302
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
303 304
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
305
                                - The shape is (1 x 7D).
306
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
307 308
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
309 310
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
311
                              "identity"], default "sigmoid".
312
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
313 314
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
315 316
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
317 318
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
319 320
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
321 322

    Returns:
Y
Yibing Liu 已提交
323 324
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
325

Y
Yibing Liu 已提交
326
    Examples:
Y
Yibing Liu 已提交
327 328
        .. code-block:: python

Y
Yibing Liu 已提交
329 330
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
331
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
332 333
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
334
    """
335

Y
Yu Yang 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
350 351 352 353 354 355 356 357 358 359
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
360 361 362

    helper.append_op(
        type='lstm',
363
        inputs=inputs,
Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
380 381 382 383 384 385 386 387 388 389 390
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
391 392
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
393 394 395
    """
    **Dynamic LSTMP Layer**

396 397 398 399 400 401
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
402 403 404 405 406

    The formula is as follows:

    .. math::

407
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
408

409
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
410

411
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
412

413
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
414

415
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
416

417
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
418

419
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
420

Y
Yibing Liu 已提交
421 422 423 424 425 426
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
427
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
428
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
429
          bias vector).
Y
Yibing Liu 已提交
430 431 432
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
433
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
434
    * :math:`h`: The hidden state.
435
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
436 437
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
438
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
439
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
440
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
441 442
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
443 444 445 446

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
447

Y
Yibing Liu 已提交
448 449 450 451 452 453 454 455 456 457 458 459
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
460
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
461 462
                               hidden-hidden weight and projection weight.

463 464
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
465 466
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
467 468
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
469 470
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
471 472 473 474 475 476
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
477
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
478 479 480
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
481
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
482 483 484 485 486 487 488 489 490
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
491 492
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
493 494
                              default "tanh".
        proj_activation(str): The activation for projection output.
F
stash  
fengjiayi 已提交
495 496
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
497 498
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
499 500
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
501 502

    Returns:
503 504
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
505 506 507 508 509
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
510
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
511 512
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
513 514 515
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
516 517 518 519
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
520
    """
521

Y
Yibing Liu 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
568 569 570 571 572 573 574 575 576 577 578
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

579
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
580
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
581

G
guosheng 已提交
582 583 584 585 586 587 588 589 590
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
591

G
guosheng 已提交
592
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
593

G
guosheng 已提交
594
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
595 596
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
597 598 599 600
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
601
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
602 603

    Args:
604 605
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
606
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
607
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
608 609
            is the hidden size.
        size(int): The dimension of the gru cell.
610
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
611 612
            hidden-hidden weight matrix. Note:

613
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
614
              :math:`D` is the hidden size.
615
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
616
              The first part are weights of the update gate and reset gate with
617
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
618
              candidate hidden state with shape :math:`(D \\times D)`.
619
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
620
            hidden-hidden bias.
621
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
622 623 624
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
625
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
626
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
627
        h_0 (Variable): The hidden output of the first time step.
G
guosheng 已提交
628 629

    Returns:
G
guosheng 已提交
630 631
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
632

G
guosheng 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
648
    batch_size = input.shape[0]
G
guosheng 已提交
649 650 651
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
652 653 654
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
678 679 680
def gru_unit(input,
             hidden,
             size,
681 682
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
683
             activation='tanh',
684
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
685
    """
686
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
687

688 689
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
690

691
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
692

693
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
694

695
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
696 697

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
698 699 700
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
701 702
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

703 704
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
705 706 707
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
708 709 710 711 712

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
713 714
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
715 716 717 718
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
719

720 721 722 723 724 725
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
726

727
             # assuming we have x_t_data and prev_hidden of size=10
728
             x_t = fluid.layers.fc(input=x_t_data, size=30)
729 730
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
746 747
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
748

749 750 751 752
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
753
    # create bias
754
    if helper.bias_attr:
Y
Yu Yang 已提交
755 756 757
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
758
        inputs['Bias'] = bias
Y
Yu Yang 已提交
759 760 761

    helper.append_op(
        type='gru_unit',
762
        inputs=inputs,
Y
Yu Yang 已提交
763 764 765 766 767 768
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
769 770
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
771 772 773 774 775
        })

    return updated_hidden, reset_hidden_pre, gate


776
@templatedoc()
777
def linear_chain_crf(input, label, param_attr=None):
778 779 780 781 782 783 784 785 786 787 788 789 790 791
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
        ${log_likelihood_comment}

    """
Y
Yu Yang 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


817
@templatedoc()
818
def crf_decoding(input, param_attr, label=None):
819 820 821 822 823 824 825 826 827 828 829
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        param_attr(ParamAttr): The parameter attribute for training.
        label(${label_type}): ${label_comment}

    Returns:
        ${viterbi_path_comment}
    """
Y
Yu Yang 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
843
def cos_sim(X, Y):
Y
Yu Yang 已提交
844 845 846
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
847 848 849 850 851 852 853

    Args:
        X (Variable): The input X.
        Y (Variable): The input Y.
    
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
854
    """
F
fengjiayi 已提交
855
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


869
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
870 871 872 873 874 875 876 877 878 879
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
880 881 882 883 884 885 886 887 888
        x (Variable): The input tensor.
         dropout_prob (float): Probability of setting units to zero.
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
889 890 891 892 893 894 895 896 897 898 899

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
900
    helper = LayerHelper('dropout', **locals())
901 902 903 904 905 906 907
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
908 909 910 911 912 913
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
914 915 916
    return out


F
fengjiayi 已提交
917
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
918
    """
Y
Yibing Liu 已提交
919 920
    **Cross Entropy Layer**

921 922 923
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
924 925

    1) One-hot cross-entropy:
F
fengjiayi 已提交
926
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
927

Y
Yibing Liu 已提交
928
        .. math::
Y
yangyaming 已提交
929

Y
Yibing Liu 已提交
930 931 932
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
933 934
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
935 936 937 938 939

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
940
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
941 942 943
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
944 945
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
946
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
947

Y
Yibing Liu 已提交
948
    Args:
Y
yangyaming 已提交
949
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
950 951 952 953
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
954
        label (Variable|list): the ground truth which is a 2-D tensor. When
955 956 957 958
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
959
        soft_label (bool): a flag indicating whether to
960 961
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
962 963 964 965 966

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
967 968 969 970 971
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
972 973 974 975 976 977

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
978
    """
F
fengjiayi 已提交
979
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
980 981 982 983 984 985
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
986
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
987 988 989
    return out


F
fengjiayi 已提交
990
def square_error_cost(input, label):
Y
Yu Yang 已提交
991
    """
992 993
    **Square error cost layer**

994 995
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
996

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1010 1011
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1012 1013

    Returns:
G
guosheng 已提交
1014
        Variable: The tensor variable storing the element-wise squared error \
1015
                  difference of input and label.
1016 1017 1018 1019 1020 1021 1022 1023

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1024
    """
F
fengjiayi 已提交
1025
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1035 1036
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1037 1038 1039
    return square_out


1040
@templatedoc()
Y
Yu Yang 已提交
1041 1042 1043 1044
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1045
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1046
    """
Y
yangyaming 已提交
1047
    This function computes and outputs the precision, recall and
1048
    F1-score of chunk detection.
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
    
    Returns:
        tuple: tuple containing: (precision, recall, f1_score,
               num_infer_chunks, num_label_chunks,
               num_correct_chunks)
Y
Yu Yang 已提交
1061
    """
F
fengjiayi 已提交
1062
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1063 1064 1065 1066 1067

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1068 1069 1070
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1071 1072 1073 1074 1075 1076 1077 1078

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1079 1080 1081 1082
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1083 1084 1085
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1086 1087
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1088
        })
1089 1090
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1091 1092


1093
@templatedoc()
Y
Yu Yang 已提交
1094 1095 1096 1097 1098 1099 1100
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1101
                  act=None):
Y
Yu Yang 已提交
1102 1103 1104 1105
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
    
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1160
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1172 1173 1174
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1175 1176
           stride=1,
           padding=0,
1177
           dilation=1,
Y
Yu Yang 已提交
1178 1179 1180
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1181
           use_cudnn=True,
1182
           use_mkldnn=False,
1183 1184
           act=None,
           name=None):
Y
Yu Yang 已提交
1185
    """
C
chengduoZH 已提交
1186 1187 1188
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1189 1190 1191
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1192 1193
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1194 1195 1196
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1197

1198
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1199

C
chengduoZH 已提交
1200 1201
    .. math::

C
refine  
chengduoZH 已提交
1202
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1203

C
chengduoZH 已提交
1204
    In the above equation:
C
chengduoZH 已提交
1205

1206 1207 1208 1209 1210
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1211 1212
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1213 1214 1215

    Example:

1216 1217
        - Input:

1218
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1219

1220
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1221

1222
        - Output:
1223
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1224

C
chengduoZH 已提交
1225
        Where
1226 1227

        .. math::
C
chengduoZH 已提交
1228

1229 1230
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1231 1232

    Args:
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        input (Variable): The input image with [N, C, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1261 1262

    Returns:
G
guosheng 已提交
1263
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1264 1265
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1266
    Raises:
1267 1268
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1269

C
chengduoZH 已提交
1270 1271 1272
    Examples:
        .. code-block:: python

1273 1274 1275 1276
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1277 1278 1279 1280 1281
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1282 1283

    l_type = 'conv2d'
X
xzl 已提交
1284 1285
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1286
        l_type = 'depthwise_conv2d'
1287 1288 1289 1290

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1291 1292 1293 1294 1295 1296 1297
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1298 1299 1300
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1301
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1302

C
chengduoZH 已提交
1303 1304
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1322
        type=l_type,
Y
Yu Yang 已提交
1323 1324 1325 1326 1327
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1328 1329 1330
        attrs={
            'strides': stride,
            'paddings': padding,
1331
            'dilations': dilation,
C
chengduoZH 已提交
1332
            'groups': groups,
1333 1334
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1335
        })
Y
Yu Yang 已提交
1336 1337 1338 1339 1340 1341

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1342
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1343
    """
Y
yangyaming 已提交
1344 1345 1346
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1372 1373
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1374

L
Luo Tao 已提交
1375 1376
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1377
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1378 1379 1380 1381 1382 1383 1384 1385
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1386

Y
yangyaming 已提交
1387
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1388 1389 1390 1391 1392
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1393 1394
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1395
    """
F
fengjiayi 已提交
1396
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1408 1409 1410 1411 1412
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1413 1414 1415
    return pool_out


F
fengjiayi 已提交
1416
def sequence_first_step(input):
L
Luo Tao 已提交
1417
    """
1418
    This function gets the first step of sequence.
L
Luo Tao 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1431

L
Luo Tao 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1441

Y
yangyaming 已提交
1442
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1443 1444 1445
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1446 1447 1448
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1449
def sequence_last_step(input):
L
Luo Tao 已提交
1450
    """
1451
    This function gets the last step of sequence.
L
Luo Tao 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1464

L
Luo Tao 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1474

Y
yangyaming 已提交
1475
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1476 1477 1478
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1479 1480 1481
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1482
def pool2d(input,
C
chengduoZH 已提交
1483 1484
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1485 1486
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1487
           global_pooling=False,
C
chengduoZH 已提交
1488
           use_cudnn=True,
1489
           ceil_mode=False,
1490
           use_mkldnn=False,
C
caoying03 已提交
1491
           name=None):
Y
Yu Yang 已提交
1492 1493 1494
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
    
    Returns:
        Variable: output of pool2d layer.
Y
Yu Yang 已提交
1511 1512 1513 1514 1515
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1516

C
chengduoZH 已提交
1517 1518 1519 1520 1521
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1522 1523 1524 1525
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1526 1527
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1542
            "paddings": pool_padding,
1543
            "use_cudnn": use_cudnn,
1544 1545
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1558
               data_layout='NCHW',
Y
Yang Yang 已提交
1559
               in_place=False,
1560
               use_mkldnn=False,
1561 1562
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1563
               moving_variance_name=None,
W
wanghaoshuang 已提交
1564
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1565 1566 1567
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

    Args:
        input (Variable): the input variable.
        act (str): activation type
        is_test (bool): whether to run batch_norm as test mode.
        momentum (float): momentum
        epsilon (float): epsilon, default 1e-05
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        data_layout (str): data layout, default NCHW
        in_place (bool): if True, do not create tmp variable
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): The name of this layer. It is optional.
        moving_mean_name (str): The name of moving mean variable name, optional.
        moving_variance_name (str): The name of moving variance name, optional.
        do_model_average_for_mean_and_var (bool):

    Returns:
        Variable: output of batch_norm layer.
Y
Yu Yang 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1610
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1611

1612 1613
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1614 1615 1616
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1617
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1618
        shape=param_shape,
1619 1620 1621 1622 1623 1624 1625
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1626
            trainable=False,
W
wanghaoshuang 已提交
1627
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1628
        shape=param_shape,
1629 1630
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1631 1632 1633 1634 1635 1636

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1637 1638
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1639

Y
Yang Yang 已提交
1640
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1658 1659 1660 1661 1662 1663
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1664 1665 1666 1667

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1680
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1701
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1702
            normalization.
1703
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1704
            normalization.
1705
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1706
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1707
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1708 1709 1710 1711 1712 1713
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
1714
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1740
    if shift:
G
guosheng 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1765
def beam_search_decode(ids, scores, name=None):
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
    """
    ${beam_search_decode}

    Args:
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        name (str): The name of this layer. It is optional.
    
    Returns:
        tuple: a tuple of two output variable: sentence_ids, sentence_scores
    """
Y
Yu Yang 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1797 1798 1799
                     padding=0,
                     stride=1,
                     dilation=1,
1800
                     groups=None,
C
caoying03 已提交
1801
                     param_attr=None,
1802
                     bias_attr=None,
C
chengduoZH 已提交
1803
                     use_cudnn=True,
1804
                     act=None,
C
caoying03 已提交
1805
                     name=None):
Y
Yu Yang 已提交
1806
    """
1807 1808 1809 1810 1811 1812 1813 1814
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1815 1816
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1829 1830
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1845

1846 1847 1848 1849
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1850 1851

    Args:
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
1885 1886

    Returns:
1887
        Variable: The tensor variable storing the convolution transpose result.
1888 1889

    Raises:
1890 1891
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
1892 1893 1894 1895

    Examples:
       .. code-block:: python

1896 1897 1898 1899
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1900 1901 1902 1903 1904 1905
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1906 1907 1908
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1909

C
chengduoZH 已提交
1910 1911 1912
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1913 1914 1915 1916 1917 1918 1919 1920
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1921 1922 1923 1924 1925

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1926
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1927 1928 1929
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
1930

1931 1932
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
1933 1934 1935
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

1936
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
1937 1938 1939 1940
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
1941
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
1942 1943 1944 1945
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
1946
            'groups': groups,
C
chengduoZH 已提交
1947 1948
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1949

1950 1951
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
1952
    return out
Y
yangyaming 已提交
1953 1954


Y
yangyaming 已提交
1955
def sequence_expand(x, y, ref_level=-1, name=None):
1956
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
1957 1958 1959 1960
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
1961 1962 1963 1964 1965

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
Y
yangyaming 已提交
1966 1967
                x.lod  = [[0,   2,        4]]
                x.data = [[a], [b], [c], [d]]
1968 1969 1970 1971 1972 1973
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

Y
yangyaming 已提交
1974
            ref_level: 0
1975

Y
yangyaming 已提交
1976 1977 1978
            then output is a 1-level LoDTensor:
                out.lod =  [[0,   2,        4,        6,        8]]
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
1979 1980 1981 1982
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
1983
                x.data = [[a], [b], [c]]
1984 1985 1986
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1987
                y.lod = [[0, 2, 2, 5]]
1988

Y
yangyaming 已提交
1989
            ref_level: -1
1990

Y
yangyaming 已提交
1991 1992 1993
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
1994 1995 1996
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1997 1998
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
1999
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2000
                        will be named automatically.
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2011
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2012
    """
Y
yangyaming 已提交
2013
    helper = LayerHelper('sequence_expand', input=x, **locals())
2014 2015 2016
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2017 2018 2019 2020 2021
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2022
    return tmp
2023 2024


Q
Qiao Longfei 已提交
2025 2026 2027
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

    Args:
        pre_ids (Variable): ${pre_ids_comment}
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        beam_size (int): ${beam_size_comment}
        end_id (int): ${end_id_comment}
        level (int): ${level_comment}
    
    Returns:
        tuple: a tuple of beam_search output variables: selected_ids, selected_scores
Q
Qiao Longfei 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2068 2069 2070 2071
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2072
              param_attr=None,
C
caoying03 已提交
2073 2074
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2075 2076 2077 2078
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2079
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2080

2081
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2082

2083
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2084

2085
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2086 2087 2088

            h_t & = o_t tanh(c_t)

2089 2090 2091 2092 2093 2094
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2095 2096 2097

        .. math::

2098
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2099 2100 2101 2102 2103 2104 2105 2106

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2107
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2108 2109

    Args:
Y
yangyaming 已提交
2110 2111 2112 2113 2114 2115
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2116
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2117 2118
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2119 2120
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2121 2122
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2123 2124

    Returns:
Y
yangyaming 已提交
2125
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2126 2127

    Raises:
2128 2129 2130 2131
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2132 2133 2134 2135 2136 2137

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2138
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2139
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2140
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2157
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2158 2159 2160 2161
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2162 2163
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2164 2165 2166
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2167
    size = cell_t_prev.shape[1]
2168
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2169 2170
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2171
                param_attr=param_attr,
2172
                bias_attr=bias_attr)
Y
yangyaming 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2185
    return h, c
G
guosheng 已提交
2186 2187


C
caoying03 已提交
2188
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2189
    """
Y
yangyaming 已提交
2190
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2191 2192 2193

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2194
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2195 2196
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2197 2198
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2199
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2200
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2201
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2202 2203
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2204 2205 2206

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2207

G
guosheng 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2219 2220 2221 2222 2223 2224 2225 2226

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2227 2228 2229
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2230 2231
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2232 2233 2234 2235 2236
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2237
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2238 2239 2240 2241
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2242 2243


C
caoying03 已提交
2244
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2245
    """
Y
yangyaming 已提交
2246
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2247 2248 2249

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2250
        dim (list|int|None): The dimensions along which the mean is computed. If
Y
yangyaming 已提交
2251 2252 2253
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
W
whs 已提交
2254
            :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2255 2256
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2257
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2258 2259
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2260 2261 2262

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2263

G
guosheng 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2274 2275
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2276 2277 2278 2279 2280 2281 2282

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2283 2284 2285
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2286 2287
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2288 2289 2290 2291 2292
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2293
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2294 2295 2296 2297
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2298 2299


C
caoying03 已提交
2300
def reduce_max(input, dim=None, keep_dim=False, name=None):
2301
    """
Y
yangyaming 已提交
2302
    Computes the maximum of tensor elements over the given dimension.
2303 2304 2305

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2306
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2307 2308 2309
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2310
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2311 2312
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2313
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2314 2315
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2316 2317 2318

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2331 2332 2333 2334 2335 2336 2337

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2338 2339 2340
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2341 2342
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2343 2344 2345 2346 2347
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2348
            'dim': dim if dim != None else [0],
2349 2350 2351 2352 2353 2354
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2355
def reduce_min(input, dim=None, keep_dim=False, name=None):
2356
    """
Y
yangyaming 已提交
2357
    Computes the minimum of tensor elements over the given dimension.
2358 2359 2360

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2361
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2362 2363 2364
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2365
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2366 2367
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2368
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2369 2370
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2371 2372 2373

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2374

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2386 2387 2388 2389 2390 2391 2392

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2393 2394 2395
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2396 2397
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2398 2399 2400 2401 2402
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2403
            'dim': dim if dim != None else [0],
2404 2405 2406 2407
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2408 2409


2410 2411 2412 2413 2414 2415
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2416
        dim (list|int|None): The dimensions along which the product is performed. If
2417 2418
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2419 2420
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2421 2422 2423
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2424
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2425
            layer will be named automatically.
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2440
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2441
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2442 2443 2444 2445 2446 2447 2448

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2449 2450 2451
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2452 2453
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2454 2455 2456 2457 2458
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2459
            'dim': dim if dim != None else [0],
2460 2461 2462 2463 2464 2465
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2466
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2467
    """
C
caoying03 已提交
2468
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2469 2470 2471

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2472 2473 2474 2475 2476
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2477
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2478
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2479
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2480 2481
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
2494 2495
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2525 2526 2527 2528 2529 2530 2531 2532 2533


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2534 2535
    .. math::
    y = \frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2536 2537 2538 2539 2540

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2541 2542 2543 2544 2545 2546 2547 2548
        x(Variable|list): The input tensor to l2_normalize layer.
        axis(int): The axis on which to apply normalization. If `axis < 0`,
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
        epsilon(float): The epsilon value is used to avoid division by zero,
            the defalut value is 1e-10.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
caoying03 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2560
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2561 2562
    """

F
fengjiayi 已提交
2563 2564
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2565 2566
    helper = LayerHelper("l2_normalize", **locals())

2567 2568
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
2569
    helper.append_op(
2570 2571 2572 2573
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
2574
        attrs={
2575 2576
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
2577 2578
        })
    return out
2579 2580


2581
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2582
    """
Y
ying 已提交
2583 2584 2585 2586
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2587

C
chengduoZH 已提交
2588
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2589
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2590

2591 2592 2593 2594 2595
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2596
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2597

C
chengduoZH 已提交
2598
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2599
      performs in the following way.
G
guosheng 已提交
2600

2601
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2602
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2603
        last two dimensions and a batched matrix multiply supporting broadcast
2604
        applies on the two tensors.
G
guosheng 已提交
2605

Y
ying 已提交
2606 2607
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2608
    removed after matrix multiplication.
G
guosheng 已提交
2609 2610 2611

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2612 2613 2614
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2615
        name(str|None): A name for this layer(optional). If set None, the layer
2616
            will be named automatically.
G
guosheng 已提交
2617 2618

    Returns:
2619
        Variable: The product Tensor variable.
G
guosheng 已提交
2620

G
guosheng 已提交
2621 2622 2623
    Examples:
        .. code-block:: python

2624
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2625 2626
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2627

2628 2629
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2630

2631 2632
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2633

2634 2635
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2636 2637 2638 2639

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2640 2641
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2642

Y
ying 已提交
2643
            # x: [M], y: [N]
2644
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2645
    """
Y
ying 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2658
            y_shape = y_shape + [1]
Y
ying 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2675
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2676
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2677
    helper.append_op(
2678 2679 2680 2681 2682 2683 2684
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2685 2686


2687
def topk(input, k, name=None):
Q
qingqing01 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

    If the input is a vector (rank=1), finds the k largest entries in the vector
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
        k(int): An integer value to specify the top k largest elements.
2703 2704
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Q
qingqing01 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

    Returns:
        values(Variable): The k largest elements along each last dimensional
            slice.
        indices(Variable): The indices of values within the last dimension of
            input.

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
    if k < 1 and k >= shape[-1]:
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


2736
def edit_distance(input, label, normalized=True, ignored_tokens=None):
2737
    """
Y
ying 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2747

Y
ying 已提交
2748
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2749

2750
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
2751 2752
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
2753
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
2754

2755
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
2756 2757
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2758

2759 2760 2761
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
2762
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
2763
                          the length of reference string.
2764
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
2765
                                     calculating edit distance.
2766
        name (str): The name of this layer. It is optional.
2767

W
wanghaoshuang 已提交
2768
    Returns:
W
wanghaoshuang 已提交
2769
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2770 2771 2772 2773 2774

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2775
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
2776
            cost = fluid.layers.edit_distance(input=x,label=y)
2777
    """
2778
    helper = LayerHelper("edit_distance", **locals())
2779

2780
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2781
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2782 2783 2784 2785 2786 2787 2788
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2789
            attrs={"tokens": ignored_tokens})
2790 2791 2792 2793 2794
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
2795
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
2796
            attrs={"tokens": ignored_tokens})
2797 2798
        label = erased_label

2799 2800
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2801
    sequence_num = helper.create_tmp_variable(dtype="int64")
2802 2803 2804 2805
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2806 2807
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2808 2809
        attrs={"normalized": normalized})

2810
    return edit_distance_out, sequence_num
2811 2812 2813 2814 2815


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2816 2817 2818 2819
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2858
        name (str): The name of this layer. It is optional.
2859 2860

    Returns:
2861
        Variable: CTC greedy decode result. If all the sequences in result were
2862
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2863 2864 2865 2866 2867

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2868

2869
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2870
    """
2871
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
2872
    _, topk_indices = topk(input, k=1)
2873 2874 2875 2876 2877 2878

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2879
        outputs={"Output": [ctc_out]},
2880 2881
        attrs={"merge_repeated": True,
               "blank": blank})
2882
    return ctc_out
2883 2884


F
fengjiayi 已提交
2885
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2886
    """
2887 2888
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2889
    to compute Connectionist Temporal Classification (CTC) loss.
2890 2891
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2892 2893 2894
    input tensor.

    Args:
2895
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
2896 2897 2898 2899
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
2900 2901 2902 2903
       label (Variable): The ground truth of variable-length sequence, 
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
2904 2905
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
2906 2907 2908 2909
       norm_by_times(bool, default false): Whether to normalize the gradients 
         by the number of time-step, which is also the sequence's length. 
         There is no need to normalize the gradients if warpctc layer was 
         follewed by a mean_op.
W
wanghaoshuang 已提交
2910 2911

    Returns:
2912 2913
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2914 2915

    Examples:
2916

W
wanghaoshuang 已提交
2917
        .. code-block:: python
2918

2919 2920 2921
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
2922 2923

    """
F
fengjiayi 已提交
2924
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
2951 2952 2953
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
2954 2955 2956 2957 2958
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
2959

2960
            out.lod  = [[0, 1, 3]]
2961 2962 2963 2964 2965

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]

2966 2967 2968 2969 2970 2971 2972
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
2973 2974 2975

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
2976 2977

    Returns:
2978

2979 2980 2981 2982 2983
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

2984
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
2985
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
2986 2987 2988 2989 2990 2991 2992 2993 2994
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2995 2996


2997 2998 2999 3000
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3001 3002 3003 3004 3005 3006 3007
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
        sample_weight (int): ${sample_weight_comment}
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
    
    Returns:
        Variable: output of nce layer.
    """
Y
Yang Yu 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3067
    return cost / (num_neg_samples + 1)
3068 3069


Y
fix ci.  
ying 已提交
3070
def transpose(x, perm, name=None):
Y
ying 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3080 3081 3082
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3083 3084 3085 3086 3087 3088 3089 3090

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3091
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3092 3093
    """

Y
fix ci.  
ying 已提交
3094
    if len(perm) != len(x.shape):
Y
ying 已提交
3095 3096 3097
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3098 3099 3100 3101 3102 3103
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3104 3105

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3106
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3107 3108
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3109
        inputs={'X': [x]},
Y
ying 已提交
3110 3111 3112
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3113 3114


3115
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3116
    """
3117 3118 3119 3120 3121 3122 3123
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3152 3153 3154
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3155 3156 3157 3158 3159
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3189 3190 3191
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

3212 3213
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3214 3215

    """
W
wanghaoshuang 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3227
    helper = LayerHelper('im2sequence', **locals())
3228 3229
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3230
        type='im2sequence',
3231 3232 3233
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3234 3235 3236
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3237 3238
        })
    return out
3239 3240


3241 3242 3243 3244
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
3245
    equation of row convolution is as follows:
3246 3247 3248 3249 3250 3251 3252

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
3253
    * :math:`\\tau`: Future context size.
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
3264 3265
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3291
    return helper.append_activation(out)
3292 3293


3294 3295 3296 3297
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3313 3314

    Args:
3315
        inputs (list): A list of variables to gather from. All variables have the
Y
yangyaming 已提交
3316
                same shape and the rank is at least 2.
3317
        index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3318
                with shape [M, 1] where M is the batch size.
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3332 3333 3334 3335 3336 3337

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3338 3339 3340 3341 3342 3343
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3344 3345 3346 3347 3348


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3349

3350 3351 3352 3353
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3354

3355 3356 3357
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3358

3359 3360 3361
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3362

3363
    The equation is as follows:
3364

3365
    1) Hard label (one-hot label, so every sample has exactly one class)
3366

3367 3368 3369 3370
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3371

3372 3373 3374
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
3397 3398
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

Q
qingqing01 已提交
3417
    This operator computes the smooth L1 loss for X and Y.
3418
    The operator takes the first dimension of X and Y as batch size.
Q
qingqing01 已提交
3419
    For each instance, it computes the smooth L1 loss element by element first
3420
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3421

3422 3423
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3424
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3425
        y (Variable): A tensor with rank at least 2. The target value of smooth
Q
qingqing01 已提交
3426
            L1 loss op with same shape as x.
3427 3428 3429 3430 3431 3432
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
Q
qingqing01 已提交
3433
            the out smooth L1 loss will be multiplied by this tensor element
3434
            by element.
Q
qingqing01 已提交
3435
        sigma (float|None): Hyper parameter of smooth L1 loss op. A float scalar
3436 3437
            with default value 1.0.
    Returns:
Q
qingqing01 已提交
3438
        Variable: A tensor with rank be 2. The output smooth L1 loss with
3439 3440 3441 3442 3443 3444
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
3445 3446
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
3447
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3448
            out = fluid.layers.smooth_l1(x=fc, y=label)
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3465 3466 3467 3468 3469 3470 3471 3472 3473


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3474
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3475 3476 3477 3478 3479 3480
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
C
caoying03 已提交
3481 3482
        .. code-block:: python

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3504 3505


Y
Yu Yang 已提交
3506
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3507
    """
Y
Yu Yang 已提交
3508
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3509
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3510 3511 3512 3513 3514 3515

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

3516 3517
    Returns:
        Variable: The global run counter.
Y
Yu Yang 已提交
3518 3519
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3520 3521
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3522 3523 3524 3525 3526
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3527
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3528 3529 3530
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3531 3532
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3533 3534 3535
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3536 3537


3538
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
3539
    """
C
caoying03 已提交
3540 3541
    Gives a new shape to the input Tensor without changing its data.

3542 3543 3544 3545 3546
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
3547

3548
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
3549

3550 3551 3552 3553
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

3554
    2. 0 means the actual dimension value is going to be copied from the
3555 3556 3557 3558
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
3559 3560

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
3561
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
3562
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
3563

3564
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3565 3566
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
3567 3568
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
3569
    dimensions.
C
caoying03 已提交
3570

3571
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3572 3573 3574 3575
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
3576 3577

    Args:
3578
        x(variable): The input tensor.
C
caoying03 已提交
3579 3580
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
3581 3582 3583 3584 3585
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
3586 3587 3588 3589
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
3590
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
3591

3592 3593
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
3594 3595 3596

    Examples:
        .. code-block:: python
G
guosheng 已提交
3597

3598
            data = fluid.layers.data(
3599
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
3600
            reshaped = fluid.layers.reshape(
3601
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
3602 3603 3604 3605 3606
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
3622 3623 3624 3625
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
3626 3627 3628
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
3629 3630 3631 3632 3633
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
3634 3635


Y
yangyaming 已提交
3636
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
    """
    LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
    **target_lod**. When **y** provided, **y.lod** would be considered as target
    LoD first, otherwise **y.data** would be considered as target LoD. If **y**
    is not provided, target LoD should be specified by **target_lod**.
    If target LoD is specified by **Y.data** or **target_lod**, only one level
    LoD is supported.

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
        y (Variable|None): If provided, output's LoD would be derived from y.
        target_lod (list|tuple|None): One level LoD which should be considered
                                      as target LoD when y not provided.

    Returns:
        Variable: Output variable with LoD specified by this operator.

    Raises:
        ValueError: If y and target_lod are both None.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
3771 3772
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
3800 3801 3802 3803


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
3804
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
3805
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
3806

G
guosheng 已提交
3807 3808 3809 3810
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
3833
                         The length of :attr:paddings must be
G
guosheng 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3844

G
guosheng 已提交
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
3859 3860 3861 3862 3863 3864 3865 3866 3867


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
3868 3869
    called label-smoothing regularization (LSR).

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
3893
                              be :math:`(1, class\_num)`.
3894 3895
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
3896
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
3924 3925 3926 3927


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
3928
    Region of interest pooling (also known as RoI pooling) is to perform
3929 3930
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
3931 3932 3933 3934
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
3935 3936 3937 3938 3939 3940 3941
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
3942 3943
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
3944 3945 3946 3947 3948 3949 3950 3951
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
3952
        pool_out (Variable): The output is a 4-D tensor of the shape
3953 3954 3955
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
3956 3957
        .. code-block:: python

3958
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4004 4005
        .. code-block:: python

W
whs 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4017 4018


4019 4020 4021 4022 4023
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4024
    """
4025
    Resize a batch of images.
F
stash  
fengjiayi 已提交
4026

4027 4028 4029 4030 4031
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4032

4033
    Args:
4034
        input (Variable): The input tensor of image resize layer,
4035 4036
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4037
        out_shape(list|tuple|Variable|None): Output shape of image resize
4038 4039
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4040
        scale(float|None): The multiplier for the input height or width.
4041 4042 4043
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4044 4045
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4046 4047
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4048 4049 4050 4051

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4052

4053 4054 4055
    Examples:
        .. code-block:: python

4056
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4057
    """
4058 4059 4060 4061
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4062 4063
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4064 4065
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4066 4067 4068 4069

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4070 4071 4072
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4073
    if out_shape is not None:
B
baiyf 已提交
4074 4075 4076
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4077 4078 4079 4080 4081 4082
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4083 4084 4085 4086
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4087 4088
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4089
        type=resample_methods[resample],
4090
        inputs=inputs,
4091 4092 4093 4094
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4095 4096


4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
@templatedoc(op_type="bilinear_interp")
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.

        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
        resample (str): resample method, default: BILINEAR.

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4153 4154 4155 4156 4157 4158 4159
def gather(input, index):
    """
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4160
        Out = X[Index]
W
whs 已提交
4161 4162 4163 4164 4165 4166 4167


    .. code-block:: text


                Given:

4168 4169
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
4187

W
whs 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}

    """
F
stash  
fengjiayi 已提交
4222 4223 4224
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
4225 4226 4227
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4228
    if isinstance(seed, int):
F
fengjiayi 已提交
4229
        seed_value = seed
F
fengjiayi 已提交
4230 4231 4232 4233 4234 4235 4236 4237
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4238 4239
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4240
            })
F
stash  
fengjiayi 已提交
4241 4242
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4243
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4244 4245
    helper.append_op(
        type="random_crop",
4246
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4247 4248 4249 4250 4251
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301


def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
    semantic image segmentation, which first computes the IOU for each 
    semantic class and then computes the average over classes. 
    IOU is defined as follows: 
    
    .. math::
        
        IOU = true_positive / (true_positive + false_positive + false_negative). 

    The predictions are accumulated in a confusion matrix and mean-IOU 
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
        label (Variable):  A Tensor of ground truth labels with type int32 or int64. 
                           Its shape should be the same as input.

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class. 


    Examples:

        .. code-block:: python

            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
        inputs={"predictions": input,
                "labels": label},
        outputs={
            "out_mean_iou": out_mean_iou,
            "out_wrong": out_wrong,
            "out_correct": out_correct
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct