executor.py 47.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
H
Huihuang Zheng 已提交
26
from .framework import Program, default_main_program, Variable, convert_np_dtype_to_dtype_
27
from . import core
28 29
from . import compiler
from .. import compat as cpt
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32

T
Tink_Y 已提交
33
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
g_scope = core.Scope()
F
flame 已提交
36 37
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
38

Y
Yu Yang 已提交
39

Y
Yang Yu 已提交
40
def global_scope():
Y
yuyang18 已提交
41 42 43 44
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
45 46 47
    Returns:
        Scope: The global/default scope instance.

48 49 50 51 52 53 54 55
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
56
    """
Y
Yang Yu 已提交
57 58 59
    return g_scope


60
def _switch_scope(scope):
Y
Yang Yu 已提交
61 62 63 64 65 66
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
67
@signature_safe_contextmanager
Y
Yang Yu 已提交
68
def scope_guard(scope):
Y
yuyang18 已提交
69
    """
70 71 72 73 74 75 76 77 78 79 80 81
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
82

83 84
    Returns:
        None
L
lujun 已提交
85

Y
yuyang18 已提交
86
    Examples:
87 88
        .. code-block:: python

89
            import paddle.fluid as fluid
L
lujun 已提交
90
            import numpy
Y
yuyang18 已提交
91

L
lujun 已提交
92 93 94 95
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
96
    """
L
lujun 已提交
97

98
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
99
    yield
100
    _switch_scope(ex)
Y
Yang Yu 已提交
101 102


D
dzhwinter 已提交
103
def as_numpy(tensor):
104 105 106
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
107

108
    Examples:
109 110 111 112 113 114 115 116 117 118
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
119 120 121 122 123 124 125

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
126 127
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
128 129 130 131
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
132
    if len(lod) > 0:
D
dzhwinter 已提交
133
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
134 135 136
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
137 138 139 140
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
141 142


H
Huihuang Zheng 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


def check_feed_shape_type(var, feed):
    """
    Returns True if the variable doesn't require feed check or it is compatible
    with the shape and have same dtype as the feeded value.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
        feed (LoDTensor): the feeded value, which must be a LoDTensor
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
        if not dimension_is_compatible_with(feed.shape(), var.shape):
218 219 220 221
            raise ValueError(
                'The feeded Variable %r should have dimensions = %d, shape = '
                '%r, but received feeded shape %r' %
                (var.name, len(var.shape), var.shape, feed.shape()))
H
Huihuang Zheng 已提交
222
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
223 224 225 226 227 228 229
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
                'The data type of feeded Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
230 231 232
    return True


233 234 235 236 237 238 239 240 241 242 243 244
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
245 246
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
247 248 249
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
250
        A boolean value that indicates whether a block has feed operators
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
273

274 275 276 277 278 279 280 281 282
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
283 284 285
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
286

X
xuwei06 已提交
287 288 289
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
311
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
312
    """
C
chengduoZH 已提交
313 314 315
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
316
    Args:
317 318 319 320
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
321 322 323 324
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
325 326 327 328 329 330
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
331
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
332

Y
Yibing Liu 已提交
333
    var = scope.find_var(name)
334 335 336 337
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
338 339 340 341 342 343
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
344 345 346 347 348 349 350 351 352
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
353 354


355 356 357 358
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
359 360 361
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
362 363 364 365

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
class FetchHandler(object):
    def __init__(self, fetch_target_names, period_secs=60, return_np=True):
        self.fetch_target_names = fetch_target_names
        self.period_secs = period_secs
        self.return_np = return_np

    def handler(self, fetch_target_vars):
        return

    @staticmethod
    def help():
        print("""
class FetchHandlerExamlpe(FetchHandler):
    def handler(self, fetch_target_vars):
        b_auc = fetch_target_vars[0]
        g_auc = fetch_target_vars[1]
                        
        print("b_auc: {}, g_auc: {} at time: {}".format(b_auc, g_auc, time.ctime()))
""")


Y
Yu Yang 已提交
418
class Executor(object):
419
    """
420
    An Executor in Python, supports single/multiple-GPU running,
C
chengduo 已提交
421 422 423 424 425 426 427 428 429
    and single/multiple-CPU running. When construction the Executor,
    the device is required.

    Args:
        place(fluid.CPUPlace()|fluid.CUDAPlace(n)): This parameter represents
            the executor run on which device.

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
430

431
    Examples:
S
Fix doc  
sneaxiy 已提交
432 433
        .. code-block:: python

434 435 436 437 438 439 440 441 442 443 444 445
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
C
chengduo 已提交
446
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
479 480
    """

D
dzhwinter 已提交
481 482
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
483
        self.program_caches = dict()
484
        self.ctx_caches = dict()
485 486
        self.scope_caches = dict()
        self.var_caches = dict()
487 488 489
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
490
        self._closed = False
D
dzhwinter 已提交
491

492 493 494 495 496 497
    def _get_var_cache(self, program_cache_key):
        return self.var_caches.get(program_cache_key, None)

    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

498 499 500
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
501 502 503 504 505 506
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

507 508 509
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

510 511 512 513 514 515
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

    def _add_var_cache(self, var_cache_key, var):
        self.var_caches[var_cache_key] = var

Q
Qiao Longfei 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
542
                global_block._prepend_op(
Q
Qiao Longfei 已提交
543 544 545 546 547 548 549 550
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
551 552 553
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
554 555 556 557 558 559 560 561 562 563
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
564 565
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
566 567 568 569
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
570
                    cur_feed = _as_lodtensor(cur_feed, self.place)
H
Huihuang Zheng 已提交
571 572
                var = global_block.var(feed_target_name)
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
573 574 575 576 577 578 579 580
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
581
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
582 583 584
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
585 586 587 588 589 590
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
591 592
    def close(self):
        """
C
chengduo 已提交
593 594 595
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
596

C
chengduo 已提交
597 598
        Returns:
            None
599 600 601 602 603 604 605 606 607 608

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
609
        """
610 611
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
612
            self._closed = True
Y
Yancey1989 已提交
613

X
fix  
Xin Pan 已提交
614
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
615
                      return_numpy):
616
        exe = program._executor
H
Huihuang Zheng 已提交
617 618 619 620 621
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
622 623 624 625 626 627
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
628
                    # always set to CPU place, since the tensor need to be split
629
                    # it is fast in CPU
630 631 632
                    assert isinstance( feed[feed_name], np.ndarray ), \
                        "The input({}) should be numpy.array, but not {}.".format(
                        feed_name, type(feed[feed_name]))
633
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
H
Huihuang Zheng 已提交
634 635 636
                if need_check_feed:
                    var = global_block.var(feed_name)
                    check_feed_shape_type(var, feed_tensor)
637 638
                feed_tensor_dict[feed_name] = feed_tensor

639
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
640
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
641
            if len(feed) != len(program._places):
642 643 644 645 646 647 648 649 650 651 652 653 654 655
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
656 657 658
                        assert isinstance(each[feed_name], np.ndarray), \
                            "The input({}) should be numpy.array, but not {}.".format(
                            feed_name, type(each[feed_name]))
X
fix  
Xin Pan 已提交
659
                        tmp.set(tensor, program._places[i])
660
                        tensor = tmp
H
Huihuang Zheng 已提交
661 662 663
                    if need_check_feed:
                        var = global_block.var(feed_name)
                        check_feed_shape_type(var, tensor)
664 665
                    res_dict[feed_name] = tensor
                res.append(res_dict)
666
            exe.feed_tensors_into_local_scopes(res)
667

X
polish  
Xin Pan 已提交
668
        fetch_var_names = list(map(_to_name_str, fetch_list))
669
        tensors = exe.run(fetch_var_names)._move_to_list()
670
        return as_numpy(tensors) if return_numpy else tensors
671

Y
Yu Yang 已提交
672
    def run(self,
Y
Yu Yang 已提交
673
            program=None,
674 675
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
676
            feed_var_name='feed',
Y
Yu Yang 已提交
677
            fetch_var_name='fetch',
D
dzhwinter 已提交
678
            scope=None,
679 680
            return_numpy=True,
            use_program_cache=False):
681
        """
C
chengduo 已提交
682 683 684 685 686
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
        specify the scope to store the :code:`Variables` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`fluid.global_scope()`.
687

C
chengduo 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
                parameter is None, the program will be set to :code:`fluid.default_main_program()`.
                The default is None.
            feed(list|dict): This parameter represents the input variables of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list type variable. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the variables that need to be returned
                after the model runs. The default is None.
            feed_var_name(str): This parameter represents the name of the input variable of
                the feed operator. The default is "feed".
            fetch_var_name(str): This parameter represents the name of the output variable of
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is :code:`fluid.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched variables
                (the variable specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
                the input program is :code:`fluid.Program`, and the parameters(program, feed variable name
                and fetch_list variable) of this interface remains unchanged during running.
                The default is False.
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
               results are spliced together in dimension 0 for the same variable values
               (variables in fetch_list) on different devices.
737 738 739 740 741 742 743 744 745 746 747

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

C
chengduo 已提交
748
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
749 750 751 752 753 754 755 756 757 758 759
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
760
        """
C
chengduo 已提交
761 762 763 764 765 766 767 768 769 770 771 772
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
        except Exception as e:
            if not isinstance(e, core.EOFException):
773 774
                warnings.warn(
                    "The following exception is not an EOF exception.")
775
            six.reraise(*sys.exc_info())
C
chengduo 已提交
776 777 778

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
                  fetch_var_name, scope, return_numpy, use_program_cache):
Y
Yancey1989 已提交
779 780 781
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
782
        use_default_main_program = program is None
783 784
        if program is None:
            program = default_main_program()
C
chengduo 已提交
785
        if isinstance(program, Program) and \
786
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
787 788 789 790
            error_info = "The current program is empty."
            if use_default_main_program:
                error_info += " Maybe you should pass the Program or the CompiledProgram manually."
            warnings.warn(error_info)
791

792 793
        if scope is None:
            scope = global_scope()
794 795 796 797 798 799 800 801 802

        if fetch_list is not None:
            if isinstance(fetch_list, Variable) or isinstance(fetch_list, str):
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
803
            fetch_list = []
804

X
polish  
Xin Pan 已提交
805
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
806

X
polish  
Xin Pan 已提交
807
        # For backward compatibility, run directly.
808
        if not compiled:
C
chengduo 已提交
809
            return self._run_program(
810 811 812 813 814 815 816 817 818 819
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
820 821 822
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
823
            return self._run_parallel(
X
fix  
Xin Pan 已提交
824
                program,
825 826 827
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
828
                fetch_var_name=fetch_var_name,
829 830
                return_numpy=return_numpy)

C
chengduo 已提交
831
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
832
                     fetch_var_name, scope, return_numpy, use_program_cache):
833

834 835
        if feed is None:
            feed = {}
S
sneaxiy 已提交
836 837 838 839
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
840
        if not isinstance(feed, dict):
D
dzhwinter 已提交
841 842 843
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
844

845
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
846
        if not isinstance(program, Program):
D
dzhwinter 已提交
847 848 849
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
850

851
        if use_program_cache:
852
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
853
            cached_program = self._get_program_cache(cache_key)
854
            cached_ctx = self._get_ctx_cache(cache_key)
855 856
            cached_scope = self._get_scope_cache(cache_key)
            cached_var = self._get_var_cache(cache_key)
Q
Qiao Longfei 已提交
857 858 859 860 861 862 863 864
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
865
                fetch_list_str = list(map(_to_name_str, fetch_list))
866
                cached_ctx = self._default_executor.prepare_ctx_cache(
867 868 869 870 871 872 873 874 875
                    cached_program.desc, 0, fetch_list_str, False)
                cached_var = self._default_executor.create_variables(
                    cached_program.desc, scope, 0)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
876
                self._add_ctx_cache(cache_key, cached_ctx)
877 878
                self._add_var_cache(cache_key, cached_var)
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
879
            program = cached_program
880
            ctx = cached_ctx
881 882
            scope = cached_scope
            var = cached_var
883
        else:
Q
Qiao Longfei 已提交
884 885 886 887 888 889 890 891
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
892
        if not use_program_cache:
C
chengduo 已提交
893 894
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
895
        else:
C
chengduo 已提交
896 897
            self._default_executor.run_cached_prepared_ctx(ctx, scope, False,
                                                           False, False)
898 899
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()
        tensors = arr._move_to_list()
D
dzhwinter 已提交
900
        if return_numpy:
901 902 903
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
904

X
Xin Pan 已提交
905 906
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
907

908 909
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
910
            fout.write(str(trainer))
911 912 913 914
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

931 932 933 934 935 936 937 938 939
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
940 941 942 943
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
944 945 946
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
947 948
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
949 950 951 952 953 954
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
955
            trainer._set_program(program)
956
        else:
H
hutuxian 已提交
957 958 959 960 961 962
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
963
            trainer._set_program(program.program)
H
hutuxian 已提交
964

965
        if thread <= 0:
D
dongdaxiang 已提交
966 967
            if dataset.thread_num <= 0:
                raise RuntimeError(
968 969
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
970
            else:
971
                trainer._set_thread(dataset.thread_num)
972
        else:
973
            trainer._set_thread(thread)
H
hutuxian 已提交
974

975 976
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
977
        return scope, trainer
978

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
        if dataset is None:
            raise RuntimeError("dataset is need and should be initialized")

        if program._pipeline_opt:
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

        dataset._prepare_to_run()

        if fetch_handler is not None:
            fetch_instance = fetch_handler
        elif fetch_handler is None and fetch_list is not None:

            class FH(FetchHandler):
                def handler(self, fetch_target_vars):
                    for i in range(len(fetch_target_vars)):
                        print("{}: \n {}\n".format(fetch_info[i],
                                                   fetch_target_vars[i]))

            fetch_target_names = [var.name for var in fetch_list]
            fetch_instance = FH(fetch_target_names,
                                period_secs=print_period,
                                return_np=False)
        else:
            fetch_instance = FetchHandler([])

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

        scope0 = trainer_instance.get_worker_scope(0)

        fetch_monitor = FetchHandlerMonitor(scope0, fetch_instance)
        fetch_monitor.start()
        self._default_executor.run_from_dataset(trainer_instance)
        fetch_monitor.stop()
        dataset._finish_to_run()
        return None

1040 1041 1042 1043 1044
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1045 1046 1047
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1048 1049
                           print_period=100,
                           fetch_handler=None):
1050
        """
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1062

1063 1064
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1065
                if not provided, then default_main_program (not compiled) will be used.
1066
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1067 1068
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1069
            scope(Scope): the scope used to run this program, you can switch it to different scope
1070 1071 1072
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1073
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1074 1075
            fetch_list(Variable List): fetch variable list, each variable will be printed during
                training, default is None
1076 1077
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1078
            fetch_handler(FetchHandler): a user define class for fetch output.
1079

1080 1081 1082 1083
        Returns:
            None

        Examples:
1084 1085

            .. code-block:: python
1086

1087
                import paddle.fluid as fluid
1088 1089

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1090
                exe = fluid.Executor(place)
1091 1092
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1093 1094
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1095 1096
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1097 1098 1099 1100
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1101

1102
        """
1103 1104 1105
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1106 1107 1108 1109 1110 1111 1112 1113 1114

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1115 1116
                           print_period=100,
                           fetch_handler=None):
1117 1118 1119 1120 1121 1122 1123 1124
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
1125

1126 1127 1128 1129
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1130
                if not provided, then default_main_program (not compiled) will be used.
1131
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1132 1133
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
1134
            scope(Scope): the scope used to run this program, you can switch it to different scope
1135 1136 1137
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1138
            debug(bool): whether a user wants to run train_from_dataset 
1139 1140 1141 1142 1143
            fetch_list(Variable List): fetch variable list, each variable will be printed
                during training
            fetch_info(String List): print information for each variable, its length should be equal
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
1144
            fetch_handler(FetchHandler): a user define class for fetch output.
1145 1146 1147

        Returns:
            None
1148
        
1149
        Examples:
1150
        
1151 1152 1153
            .. code-block:: python

              import paddle.fluid as fluid
1154 1155

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1156
              exe = fluid.Executor(place)
1157 1158
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1159 1160
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1161 1162
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1163 1164 1165 1166
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1167 1168

        """
1169 1170 1171
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)