lookup_table_op.h 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
21 22 23 24

namespace paddle {
namespace operators {

C
chengduoZH 已提交
25
using Tensor = framework::Tensor;
F
fengjiayi 已提交
26
using LoDTensor = framework::LoDTensor;
27
using SelectedRows = framework::SelectedRows;
28 29

template <typename T>
Y
Yu Yang 已提交
30
class LookupTableKernel : public framework::OpKernel<T> {
31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
33 34 35 36 37
    auto* table_t = context.Input<LoDTensor>("W");  // float tensor
    auto* ids_var = context.InputVar("Ids");        // int tensor

    int64_t* ids;
    int64_t ids_numel;
C
chengduoZH 已提交
38 39 40 41
    auto* output_t = context.Output<Tensor>("Out");
    // lookup_table and concat_rows use the same kernel, for lookup_table,
    // ids_var_type should be LoDTensor, for concat_rows, ids_var_type and
    // out_var_type should be SelectedRows.
C
chengduoZH 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    if (ids_var->IsType<LoDTensor>()) {
      auto* ids_t = context.Input<LoDTensor>("Ids");
      ids = const_cast<int64_t*>(ids_t->data<int64_t>());
      ids_numel = ids_t->numel();
    } else if (ids_var->IsType<SelectedRows>()) {
      auto* ids_t = context.Input<SelectedRows>("Ids");
      ids = const_cast<int64_t*>(ids_t->rows().data());
      ids_numel = ids_t->rows().size();
      output_t->Resize({ids_numel, table_t->dims()[1]});
    } else {
      PADDLE_THROW("Unsupported Variable Type of Ids");
    }

55
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
56

F
fengjiayi 已提交
57 58
    int N = table_t->dims()[0];
    int D = table_t->dims()[1];
F
fengjiayi 已提交
59 60
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
61 62

    if (padding_idx == -1) {
C
chengduoZH 已提交
63
      for (int64_t i = 0; i < ids_numel; ++i) {
64 65 66 67
        PADDLE_ENFORCE_LT(ids[i], N);
        PADDLE_ENFORCE_GE(ids[i], 0);
        memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
      }
68
    } else {
C
chengduoZH 已提交
69
      for (int64_t i = 0; i < ids_numel; ++i) {
70 71 72 73 74 75 76 77
        if (ids[i] == padding_idx) {
          memset(output + i * D, 0, D * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], N);
          PADDLE_ENFORCE_GE(ids[i], 0);
          memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
        }
      }
78 79 80 81 82
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
83
class LookupTableGradKernel : public framework::OpKernel<T> {
84 85
 public:
  void Compute(const framework::ExecutionContext& context) const override {
86
    bool is_sparse = context.Attr<bool>("is_sparse");
87 88
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
89
    if (is_sparse) {
F
fengjiayi 已提交
90 91 92
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
93
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
94

95 96
      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();
97

98 99 100 101 102 103
      framework::Vector<int64_t> new_rows;
      new_rows.reserve(ids_dim[0]);
      for (int64_t i = 0; i < ids_dim[0]; i++) {
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
104

105 106 107 108 109 110 111 112 113 114 115 116
      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table->dims()[0]);

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table_value->data<T>();

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
F
fengjiayi 已提交
117 118 119 120
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto* d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
      auto* table = context.Input<LoDTensor>("W");
121 122 123 124 125 126 127 128 129 130

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

      int N = table->dims()[0];
      int D = d_output->dims()[1];

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table->mutable_data<T>(context.GetPlace());

131 132
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

133 134 135 136
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
137
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
138
        }
139 140 141 142 143 144 145
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle