lookup_table_op.h 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
21 22 23 24

namespace paddle {
namespace operators {

C
chengduoZH 已提交
25
using Tensor = framework::Tensor;
F
fengjiayi 已提交
26
using LoDTensor = framework::LoDTensor;
27
using SelectedRows = framework::SelectedRows;
28 29

template <typename T>
Y
Yu Yang 已提交
30
class LookupTableKernel : public framework::OpKernel<T> {
31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    auto* table_t = context.Input<LoDTensor>("W");  // float tensor
    auto* ids_var = context.InputVar("Ids");        // int tensor

    int64_t* ids;
    int64_t ids_numel;
    Tensor* output_t;

    // ids_var_types also can be LOD_TENSOR_ARRAY, it's used as concat_rows.
    // Maybe near future we will add concat_rows op.
    if (ids_var->IsType<LoDTensor>()) {
      auto* ids_t = context.Input<LoDTensor>("Ids");
      output_t = context.Output<LoDTensor>("Out");
      ids = const_cast<int64_t*>(ids_t->data<int64_t>());
      ids_numel = ids_t->numel();
    } else if (ids_var->IsType<SelectedRows>()) {
      auto* ids_t = context.Input<SelectedRows>("Ids");
      output_t =
          const_cast<Tensor*>(&(context.Output<SelectedRows>("Out")->value()));
      ids = const_cast<int64_t*>(ids_t->rows().data());
      ids_numel = ids_t->rows().size();
      output_t->Resize({ids_numel, table_t->dims()[1]});
    } else {
      PADDLE_THROW("Unsupported Variable Type of Ids");
    }

58
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
59

F
fengjiayi 已提交
60 61
    int N = table_t->dims()[0];
    int D = table_t->dims()[1];
F
fengjiayi 已提交
62 63
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
64 65

    if (padding_idx == -1) {
C
chengduoZH 已提交
66
      for (int64_t i = 0; i < ids_numel; ++i) {
67 68 69 70
        PADDLE_ENFORCE_LT(ids[i], N);
        PADDLE_ENFORCE_GE(ids[i], 0);
        memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
      }
71
    } else {
C
chengduoZH 已提交
72
      for (int64_t i = 0; i < ids_numel; ++i) {
73 74 75 76 77 78 79 80
        if (ids[i] == padding_idx) {
          memset(output + i * D, 0, D * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], N);
          PADDLE_ENFORCE_GE(ids[i], 0);
          memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
        }
      }
81 82 83 84 85
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
86
class LookupTableGradKernel : public framework::OpKernel<T> {
87 88
 public:
  void Compute(const framework::ExecutionContext& context) const override {
89
    bool is_sparse = context.Attr<bool>("is_sparse");
90 91
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
92
    if (is_sparse) {
F
fengjiayi 已提交
93 94 95
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
96
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
97

98 99
      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();
100

101 102 103 104 105 106
      framework::Vector<int64_t> new_rows;
      new_rows.reserve(ids_dim[0]);
      for (int64_t i = 0; i < ids_dim[0]; i++) {
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
107

108 109 110 111 112 113 114 115 116 117 118 119
      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      d_table->set_height(table->dims()[0]);

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table_value->data<T>();

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
F
fengjiayi 已提交
120 121 122 123
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto* d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
      auto* table = context.Input<LoDTensor>("W");
124 125 126 127 128 129 130 131 132 133

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

      int N = table->dims()[0];
      int D = d_output->dims()[1];

      auto* d_output_data = d_output->data<T>();
      auto* d_table_data = d_table->mutable_data<T>(context.GetPlace());

134 135
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

136 137 138 139
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
140
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
141
        }
142 143 144 145 146 147 148
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle