fake_quantize_op.cu.h 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_FLUID_OPERATORS_FAKE_QUANTIZE_OP_CU_H_
#define PADDLE_FLUID_OPERATORS_FAKE_QUANTIZE_OP_CU_H_
#endif  // PADDLE_FLUID_OPERATORS_FAKE_QUANTIZE_OP_CU_H_

#include <string>
20

21 22 23 24 25 26 27
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/fake_quantize_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"

namespace paddle {
namespace operators {

28 29 30 31 32 33 34 35 36 37
template <typename T>
struct QuantizeDataType {
  using type = T;
};

template <>
struct QuantizeDataType<paddle::platform::float16> {
  using type = float;
};

38
template <typename T>
39
__global__ void FindAbsMaxKernel(const T *in, const int n, T *out) {
40 41 42
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

43 44
  extern __shared__ char *shared_max_data_tmp[];
  auto shared_max_data = reinterpret_cast<T *>(shared_max_data_tmp);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  if (gridDim.x > 1) {
    T local_max_data = T(0);
    for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
      T tmp = abs(in[i]);
      if (tmp > local_max_data) {
        local_max_data = tmp;
      }
    }
    shared_max_data[tid] = local_max_data;
  } else {
    if (bid < n) {
      shared_max_data[tid] = abs(in[bid]);
    } else {
      shared_max_data[tid] = T(0);
    }
  }
  __syncthreads();

  for (int i = blockDim.x / 2; i > 0; i >>= 1) {
    if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    __syncthreads();
  }
  if (tid == 0) {
    out[blockIdx.x] = shared_max_data[0];
  }
}

template <typename T>
struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
76 77 78 79
  void operator()(const platform::CUDADeviceContext &ctx,
                  const T *in,
                  const int num,
                  T *out) {
80 81 82 83 84
    int block = 1024;
    int grid = (block - 1 + num) / block;
    grid = (grid > block) ? block : grid;

    framework::Tensor max;
85
    T *max_data = max.mutable_data<T>(phi::make_ddim({grid}), ctx.GetPlace());
86 87 88 89
    FindAbsMaxKernel<T>
        <<<grid, block, 1024 * sizeof(T), ctx.stream()>>>(in, num, max_data);
    FindAbsMaxKernel<T>
        <<<1, block, 1024 * sizeof(T), ctx.stream()>>>(max_data, grid, out);
90 91 92 93 94 95 96 97
  }
};

template struct FindAbsMaxFunctor<platform::CUDADeviceContext, float>;
template struct FindAbsMaxFunctor<platform::CUDADeviceContext,
                                  paddle::platform::float16>;

template <typename T>
98 99 100 101
__global__ void FindChannelAbsMaxKernelQuantAxis0(const T *in,
                                                  const int n,
                                                  const int c,
                                                  T *out) {
102 103
  int tid = threadIdx.x;
  int channel_size = n / c;
104 105 106
  const T *in_c = in + blockIdx.x * channel_size;
  extern __shared__ char *shared_max_data_tmp[];
  auto shared_max_data = reinterpret_cast<T *>(shared_max_data_tmp);
107 108
  T local_max_data = T(0);
  for (int i = tid; i < channel_size; i += blockDim.x) {
109 110
    T tmp = static_cast<T>(
        fabs(static_cast<typename QuantizeDataType<T>::type>(in_c[i])));
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    if (tmp > local_max_data) {
      local_max_data = tmp;
    }
  }
  shared_max_data[tid] = local_max_data;
  __syncthreads();
  for (int i = blockDim.x / 2; i > 0; i >>= 1) {
    if (tid < i && (shared_max_data[tid] < shared_max_data[tid + i])) {
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    __syncthreads();
  }
  if (tid == 0) {
    out[blockIdx.x] = shared_max_data[0];
  }
}

template <typename T>
129 130 131 132
__global__ void FindChannelAbsMaxKernelQuantAxis1(
    const T *in, const int n, const int cin, const int cout, T *out) {
  extern __shared__ char *shared_max_data_tmp[];
  auto shared_max_data = reinterpret_cast<T *>(shared_max_data_tmp);
133 134 135 136 137
  int cout_wh_size = n / cin;
  int wh_size = n / (cin * cout);

  int tid = threadIdx.x;
  int bid = blockIdx.x;
138
  const T *in_current = in + tid * cout_wh_size + bid * wh_size;
139 140
  T local_max_data = T(0);
  for (int i = 0; i < wh_size; i++) {
141 142
    T tmp = static_cast<T>(
        fabs(static_cast<typename QuantizeDataType<T>::type>(in_current[i])));
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    if (tmp > local_max_data) {
      local_max_data = tmp;
    }
  }
  shared_max_data[tid] = local_max_data;
  __syncthreads();

  int len = blockDim.x;
  for (int i = (len + 1) / 2; i > 0; len = i, i = (i + 1) / 2) {
    if (tid < i && tid + i < len &&
        shared_max_data[tid] < shared_max_data[tid + i]) {
      shared_max_data[tid] = shared_max_data[tid + i];
    }
    if (i == 1) {
      i = 0;  // break the loop
    }
    __syncthreads();
  }
  if (tid == 0 && shared_max_data[0] > out[bid]) {
    out[bid] = shared_max_data[0];
  }
}

template <typename T>
struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, T> {
168 169 170 171
  void operator()(const platform::CUDADeviceContext &ctx,
                  const framework::Tensor &in_tensor,
                  const int quant_axis,
                  T *out_abs_max) {
172
    PADDLE_ENFORCE_EQ(
173 174
        quant_axis == 0 || quant_axis == 1,
        true,
175 176 177 178 179
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
    const int num = in_tensor.numel();
    auto in_dims = in_tensor.dims();
180
    const T *in_data = in_tensor.data<T>();
181 182 183 184
    if (quant_axis == 0) {
      int cout = in_dims[0];
      int grid = cout;
      int block = 1024;
185
      FindChannelAbsMaxKernelQuantAxis0<T>
186 187
          <<<grid, block, block * sizeof(T), ctx.stream()>>>(
              in_data, num, cout, out_abs_max);
188 189 190 191 192 193 194 195 196 197 198 199 200 201
    } else if (quant_axis == 1) {
      int cin = in_dims[0];
      int cout = in_dims[1];
      int grid = cout;
      int max_threads = 1024;

#ifdef PADDLE_WITH_HIP
      hipMemset(out_abs_max, 0, sizeof(T) * cout);
#else
      cudaMemset(out_abs_max, 0, sizeof(T) * cout);
#endif  // PADDLE_FLUID_OPERATORS_FAKE_QUANTIZE_OP_CU_H_

      for (int i = 0; i < cin / max_threads; i++) {
        int block = max_threads;
202 203 204
        FindChannelAbsMaxKernelQuantAxis1<T>
            <<<grid, block, block * sizeof(T), ctx.stream()>>>(
                in_data, num, cin, cout, out_abs_max);
205 206 207 208 209
        in_data += num / cin;
      }

      int block = cin % max_threads;
      if (block > 0) {
210 211 212
        FindChannelAbsMaxKernelQuantAxis1<T>
            <<<grid, block, block * sizeof(T), ctx.stream()>>>(
                in_data, num, in_dims[0], in_dims[1], out_abs_max);
213 214 215 216 217 218 219 220
      }
    }
  }
};

template struct FindChannelAbsMaxFunctor<platform::CUDADeviceContext, float>;

template <typename T>
221 222 223 224 225 226
__global__ void ClipAndQuantKernel(const T *in,
                                   const T *scale,
                                   const int bin_cnt,
                                   const int round_type,
                                   const int n,
                                   T *out) {
227 228 229
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

230 231 232 233 234 235
  using ComputeDataType = typename QuantizeDataType<T>::type;

  ComputeDataType s = static_cast<ComputeDataType>(scale[0]);
  ComputeDataType inv_s = inverse(s);
  ComputeDataType bin_cnt_t = static_cast<ComputeDataType>(bin_cnt);

236
  for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
237
    ComputeDataType x = static_cast<ComputeDataType>(in[i]);
238
    if (round_type == 0) {
239
      x = bin_cnt_t * inv_s * x;
240
      x = roundWithTiesToEven(x);
241 242 243 244 245
      ComputeDataType max_bound = bin_cnt_t;
      ComputeDataType min_bound = -bin_cnt_t - static_cast<ComputeDataType>(1);
      x = x > max_bound ? max_bound : x;
      x = x < min_bound ? min_bound : x;
      out[i] = static_cast<T>(x);
246
    } else {
247 248 249 250
      ComputeDataType v = x > s ? s : x;
      v = v < -s ? -s : v;
      v = bin_cnt_t * inv_s * v;
      out[i] = static_cast<T>(round(v));
251
    }
252 253 254 255
  }
}

template <typename T>
256 257
__global__ void ClipAndQuantDequantKernel(const T *in,
                                          const T *scale,
258
                                          const int bin_cnt,
259 260 261
                                          const int round_type,
                                          const int n,
                                          T *out) {
262 263 264
  int bid = threadIdx.x + blockIdx.x * blockDim.x;
  int tid = threadIdx.x;

265 266 267 268 269
  using ComputeDataType = typename QuantizeDataType<T>::type;

  ComputeDataType s = static_cast<ComputeDataType>(scale[0]);
  ComputeDataType inv_s = inverse(s);
  ComputeDataType bin_cnt_t = static_cast<ComputeDataType>(bin_cnt);
270 271

  for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
272
    ComputeDataType x = static_cast<ComputeDataType>(in[i]);
273
    if (round_type == 0) {
274
      x = bin_cnt_t * inv_s * x;
275
      x = roundWithTiesToEven(x);
276 277 278 279 280
      ComputeDataType max_bound = bin_cnt_t;
      ComputeDataType min_bound = -bin_cnt_t - static_cast<ComputeDataType>(1);
      x = x > max_bound ? max_bound : x;
      x = x < min_bound ? min_bound : x;
      out[i] = static_cast<T>((x * s) / bin_cnt_t);
281
    } else {
282 283 284
      x = x > s ? s : x;
      x = x < -s ? -s : x;
      x = bin_cnt_t * inv_s * x;
285
      x = round(x);
286
      out[i] = static_cast<T>((x * s) / bin_cnt_t);
287
    }
288 289 290 291 292
  }
}

template <typename T>
struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
293 294 295 296 297 298
  void operator()(const platform::CUDADeviceContext &ctx,
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  framework::Tensor *out) {
299 300 301 302
    int num = in.numel();
    int block = 1024;
    int grid = (block - 1 + num) / block;

303 304 305
    const T *in_data = in.data<T>();
    const T *scale_data = scale.data<T>();
    T *out_data = out->mutable_data<T>(ctx.GetPlace());
306 307

    ClipAndQuantKernel<T><<<grid, block, 0, ctx.stream()>>>(
308
        in_data, scale_data, bin_cnt, round_type, num, out_data);
309 310 311 312 313 314 315
  }
};

template struct ClipAndFakeQuantFunctor<platform::CUDADeviceContext, float>;

template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
316 317 318 319 320 321
  void operator()(const platform::CUDADeviceContext &ctx,
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  framework::Tensor *out) {
322 323 324 325
    int num = in.numel();
    int block = 1024;
    int grid = (block - 1 + num) / block;

326 327 328
    const T *in_data = in.data<T>();
    const T *scale_data = scale.data<T>();
    T *out_data = out->mutable_data<T>(ctx.GetPlace());
329 330

    ClipAndQuantDequantKernel<T><<<grid, block, 0, ctx.stream()>>>(
331
        in_data, scale_data, bin_cnt, round_type, num, out_data);
332 333 334 335 336
  }
};

// ChannelClipAndQuantKernel for quant_axis is 0
template <typename T>
337 338
__global__ void ChannelClipAndQuantKernelQuantAxis0(const T *in,
                                                    const T *scale,
339
                                                    const int bin_cnt,
340
                                                    const int round_type,
341
                                                    const int64_t n,
342 343
                                                    const int c,
                                                    T *out) {
344 345 346
  int tid = threadIdx.x;

  int64_t channel_size = n / c;
347 348
  const T *in_c = in + blockIdx.x * channel_size;
  T *out_c = out + blockIdx.x * channel_size;
349

350 351 352 353 354
  using ComputeDataType = typename QuantizeDataType<T>::type;

  ComputeDataType s = static_cast<ComputeDataType>(scale[blockIdx.x]);
  ComputeDataType inv_s = inverse(s);
  ComputeDataType bin_cnt_t = static_cast<ComputeDataType>(bin_cnt);
355 356

  for (int64_t i = tid; i < channel_size; i += blockDim.x) {
357
    ComputeDataType x = static_cast<ComputeDataType>(in_c[i]);
358
    if (round_type == 0) {
359
      x = bin_cnt_t * inv_s * x;
360
      x = roundWithTiesToEven(x);
361 362 363 364 365
      ComputeDataType max_bound = bin_cnt_t;
      ComputeDataType min_bound = -bin_cnt_t - static_cast<ComputeDataType>(1);
      x = x > max_bound ? max_bound : x;
      x = x < min_bound ? min_bound : x;
      out_c[i] = static_cast<T>(x);
366
    } else {
367 368 369 370
      ComputeDataType v = x > s ? s : x;
      v = v < -s ? -s : v;
      v = bin_cnt_t * inv_s * v;
      out_c[i] = static_cast<T>(round(v));
371
    }
372 373 374 375 376
  }
}

// ChannelClipAndQuantKernel for quant_axis is N
template <typename T>
377 378 379 380 381 382 383 384
__global__ void ChannelClipAndQuantKernelQuantAxisN(const T *in,
                                                    const T *scale,
                                                    const int bin_cnt,
                                                    const int round_type,
                                                    const int64_t n,
                                                    const int nScale,
                                                    const int quant_stride,
                                                    T *out) {
385
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
386 387
  using ComputeDataType = typename QuantizeDataType<T>::type;
  ComputeDataType bin_cnt_t = static_cast<ComputeDataType>(bin_cnt);
388
  for (int64_t i = idx; i < n; i += blockDim.x * gridDim.x) {
389 390 391 392
    ComputeDataType s =
        static_cast<ComputeDataType>(scale[(i / quant_stride) % nScale]);
    ComputeDataType inv_s = inverse(s);
    ComputeDataType x = static_cast<ComputeDataType>(in[i]);
393
    if (round_type == 0) {
394
      x = bin_cnt_t * inv_s * x;
395
      x = roundWithTiesToEven(x);
396 397 398 399 400
      ComputeDataType max_bound = bin_cnt_t;
      ComputeDataType min_bound = -bin_cnt_t - static_cast<ComputeDataType>(1);
      x = x > max_bound ? max_bound : x;
      x = x < min_bound ? min_bound : x;
      out[i] = static_cast<T>(x);
401
    } else {
402 403 404 405
      ComputeDataType v = x > s ? s : x;
      v = v < -s ? -s : v;
      v = bin_cnt_t * inv_s * v;
      out[i] = static_cast<T>(round(v));
406
    }
407 408 409 410 411
  }
}

template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext, T> {
412 413 414 415 416 417 418
  void operator()(const platform::CUDADeviceContext &ctx,
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  const int quant_axis,
                  framework::Tensor *out) {
419
    PADDLE_ENFORCE_EQ(
420 421
        quant_axis == 0 || quant_axis == 1,
        true,
422 423 424 425 426 427
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));

    int64_t num = in.numel();
    auto in_dims = in.dims();
428 429 430
    const T *in_data = in.data<T>();
    const T *scale_data = scale.data<T>();
    T *out_data = out->mutable_data<T>(ctx.GetPlace());
431 432 433 434 435

    if (quant_axis == 0) {
      int grid = in_dims[0];
      int block = 1024;
      ChannelClipAndQuantKernelQuantAxis0<T><<<grid, block, 0, ctx.stream()>>>(
436
          in_data, scale_data, bin_cnt, round_type, num, in_dims[0], out_data);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    } else {
      int quant_stride = 1;
      for (int i = quant_axis + 1; i < in_dims.size(); i++) {
        quant_stride *= in_dims[i];
      }
      int64_t block_size =
          std::min(num, static_cast<int64_t>(ctx.GetMaxThreadsPerBlock() / 4));
      int64_t max_threads =
          ctx.GetMaxPhysicalThreadCount();  // SM * block_per_SM
      const int64_t max_blocks = std::max(((max_threads - 1) / block_size + 1),
                                          static_cast<int64_t>(1));

      const int64_t grid_size =
          std::min(max_blocks, (num + block_size - 1) / block_size);

452 453 454 455 456 457 458 459 460
      ChannelClipAndQuantKernelQuantAxisN<T>
          <<<grid_size, block_size>>>(in_data,
                                      scale_data,
                                      bin_cnt,
                                      round_type,
                                      num,
                                      in_dims[quant_axis],
                                      quant_stride,
                                      out_data);
461 462 463 464 465 466 467 468
    }
  }
};

template struct ChannelClipAndFakeQuantFunctor<platform::CUDADeviceContext,
                                               float>;

template <typename T>
469 470 471 472 473 474 475 476
__global__ void FindRangeAbsMaxAndFillArray(const T *cur_scale,
                                            const T *last_scale,
                                            const int64_t *iter,
                                            const int window_size,
                                            T *scale_arr,
                                            T *out_scale,
                                            int *need_find_max,
                                            int *out_size) {
477 478 479 480 481 482 483
  int it = iter[0];
  int idx = it % window_size;
  T removed = scale_arr[idx];
  T cur = cur_scale[0];
  scale_arr[idx] = cur;
  T max = last_scale[0];
  out_scale[0] = max < cur ? cur : max;
484 485
  if (fabs(static_cast<typename QuantizeDataType<T>::type>(removed - max)) <
      1e-6) {
486 487 488 489 490 491 492 493 494
    need_find_max[0] = 1;
    out_size[0] = it > window_size ? window_size : it;
  } else {
    need_find_max[0] = 0;
  }
}

template <typename T>
struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, T> {
495 496 497 498 499 500 501
  void operator()(const platform::CUDADeviceContext &ctx,
                  const framework::Tensor &cur_scale,
                  const framework::Tensor &last_scale,
                  const framework::Tensor &iter,
                  const int window_size,
                  framework::Tensor *scales_arr,
                  framework::Tensor *out_scale) {
502 503
    const auto gpu_place = ctx.GetPlace();

504 505
    T *scale_arr = scales_arr->mutable_data<T>(gpu_place);
    T *out_scale_data = out_scale->mutable_data<T>(gpu_place);
506 507

    framework::Tensor need_find_max, out_size;
508 509 510 511 512 513 514 515 516 517 518 519
    int *find_max = need_find_max.mutable_data<int>({1}, gpu_place);
    int *out_size_data = out_size.mutable_data<int>({1}, gpu_place);

    FindRangeAbsMaxAndFillArray<T>
        <<<1, 1, 0, ctx.stream()>>>(cur_scale.data<T>(),
                                    last_scale.data<T>(),
                                    iter.data<int64_t>(),
                                    window_size,
                                    scale_arr,
                                    out_scale_data,
                                    find_max,
                                    out_size_data);
520 521

    int g_find_max;
522 523 524 525 526 527
    memory::Copy(platform::CPUPlace(),
                 &g_find_max,
                 gpu_place,
                 find_max,
                 sizeof(int),
                 ctx.stream());
528 529 530
    ctx.Wait();
    if (g_find_max) {
      int len;
531 532 533 534 535 536
      memory::Copy(platform::CPUPlace(),
                   &len,
                   gpu_place,
                   out_size_data,
                   sizeof(int),
                   ctx.stream());
537
      ctx.Wait();
538 539
      FindAbsMaxFunctor<platform::CUDADeviceContext, T>()(
          ctx, scale_arr, len, out_scale_data);
540 541 542 543 544
    }
  }
};

template <typename T>
545 546 547 548 549 550 551
__global__ void FindMovingAverageAbsMaxKernel(const T *in_state,
                                              const T *in_accum,
                                              const T *cur_scale,
                                              const T rate,
                                              T *out_state,
                                              T *out_accum,
                                              T *out_scale) {
552 553 554 555 556 557 558 559 560 561 562
  T state = rate * (*in_state) + T(1.0f);
  T accum = rate * (*in_accum) + (*cur_scale);
  *out_state = state;
  *out_accum = accum;
  *out_scale = accum / state;
}

template struct FindRangeAbsMaxFunctor<platform::CUDADeviceContext, float>;

template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
563 564 565 566 567 568 569 570
  void operator()(const platform::CUDADeviceContext &ctx,
                  const framework::Tensor &in_accum,
                  const framework::Tensor &in_state,
                  const T *cur_scale,
                  const float rate,
                  framework::Tensor *out_state,
                  framework::Tensor *out_accum,
                  framework::Tensor *out_scale) {
571 572 573
    const auto gpu_place = ctx.GetPlace();

    T rate_t = static_cast<T>(rate);
574 575 576 577 578 579 580 581 582 583 584 585
    T *out_state_data = out_state->mutable_data<T>(gpu_place);
    T *out_accum_data = out_accum->mutable_data<T>(gpu_place);
    T *out_scale_data = out_scale->mutable_data<T>(gpu_place);

    FindMovingAverageAbsMaxKernel<T>
        <<<1, 1, 0, ctx.stream()>>>(in_state.data<T>(),
                                    in_accum.data<T>(),
                                    cur_scale,
                                    rate_t,
                                    out_state_data,
                                    out_accum_data,
                                    out_scale_data);
586 587 588 589 590
  }
};

// ChannelClipAndQuantDequantKernel for quant_axis is 0
template <typename T>
591 592 593 594 595 596 597
__global__ void ChannelClipAndQuantDequantKernelQuantAxis0(const T *in,
                                                           const T *scale,
                                                           const int bin_cnt,
                                                           const int round_type,
                                                           const int n,
                                                           const int c,
                                                           T *out) {
598 599 600
  int tid = threadIdx.x;

  int channel_size = n / c;
601 602
  const T *in_c = in + blockIdx.x * channel_size;
  T *out_c = out + blockIdx.x * channel_size;
603 604 605 606 607 608

  T s = scale[blockIdx.x];
  T inv_s = inverse(s);

  for (int i = tid; i < channel_size; i += blockDim.x) {
    T x = in_c[i];
609
    if (round_type == 0) {
610
      x = bin_cnt * inv_s * x;
611
      x = roundWithTiesToEven(x);
612 613 614 615 616
      T max_bound = bin_cnt;
      T min_bound = -bin_cnt - static_cast<T>(1);
      x = x > max_bound ? max_bound : x;
      x = x < min_bound ? min_bound : x;
      out_c[i] = (x * s) / bin_cnt;
617
    } else {
618 619 620 621
      T v = x > s ? s : x;
      v = v < -s ? -s : v;
      v = bin_cnt * inv_s * v;
      out_c[i] = round(v) * s / bin_cnt;
622
    }
623 624 625 626 627
  }
}

// ChannelClipAndQuantDequantKernel for quant_axis is 1
template <typename T>
628 629 630 631 632 633 634 635
__global__ void ChannelClipAndQuantDequantKernelQuantAxis1(const T *in,
                                                           const T *scale,
                                                           const int bin_cnt,
                                                           const int round_type,
                                                           const int n,
                                                           const int cin,
                                                           const int cout,
                                                           T *out) {
636 637 638 639
  T s = scale[blockIdx.x % cout];
  T inv_s = inverse(s);

  int wh_size = n / (cin * cout);
640 641
  const T *in_c = in + blockIdx.x * wh_size;
  T *out_c = out + blockIdx.x * wh_size;
642 643 644

  for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
    T x = in_c[i];
645
    if (round_type == 0) {
646
      x = bin_cnt * inv_s * x;
647
      x = roundWithTiesToEven(x);
648 649 650 651 652
      T max_bound = bin_cnt;
      T min_bound = -bin_cnt - static_cast<T>(1);
      x = x > max_bound ? max_bound : x;
      x = x < min_bound ? min_bound : x;
      out_c[i] = (x * s) / bin_cnt;
653
    } else {
654 655 656 657
      T v = x > s ? s : x;
      v = v < -s ? -s : v;
      v = bin_cnt * inv_s * v;
      out_c[i] = round(v) * s / bin_cnt;
658
    }
659 660 661 662 663
  }
}

template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
664 665 666 667 668 669 670
  void operator()(const platform::CUDADeviceContext &ctx,
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  const int quant_axis,
                  framework::Tensor *out) {
671 672 673
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
674 675
        quant_axis == 0 || quant_axis == 1,
        true,
676 677 678 679 680 681 682
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));

    int num = in.numel();
    auto in_dims = in.dims();

683 684 685
    const T *in_data = in.data<T>();
    const T *scale_data = scale.data<T>();
    T *out_data = out->mutable_data<T>(ctx.GetPlace());
686 687 688 689

    if (quant_axis == 0) {
      int grid = in_dims[0];
      int block = 1024;
690
      ChannelClipAndQuantDequantKernelQuantAxis0<T>
691 692 693 694 695 696
          <<<grid, block, 0, ctx.stream()>>>(in_data,
                                             scale_data,
                                             bin_cnt,
                                             round_type,
                                             num,
                                             in_dims[0],
697
                                             out_data);
698 699 700 701
    } else if (quant_axis == 1) {
      int grid = in_dims[0] * in_dims[1];
      int block = 1024;

702
      ChannelClipAndQuantDequantKernelQuantAxis1<T>
703 704 705 706 707 708 709 710
          <<<grid, block, 0, ctx.stream()>>>(in_data,
                                             scale_data,
                                             bin_cnt,
                                             round_type,
                                             num,
                                             in_dims[0],
                                             in_dims[1],
                                             out_data);
711 712 713 714 715 716 717 718 719
    }
  }
};

template struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext,
                                                   float>;

}  // namespace operators
}  // namespace paddle