transpose_op.cc 15.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16
#include <memory>
17
#include <string>
18
#include <vector>
X
xzl 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
24 25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
Q
Qiao Longfei 已提交
36 37
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
38
    size_t x_rank = x_dims.size();
X
xzl 已提交
39
    size_t axis_size = axis.size();
X
xzl 已提交
40

X
xzl 已提交
41
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
42 43 44 45 46 47
                      platform::errors::InvalidArgument(
                          "The input tensor's dimension "
                          "should be equal to the axis's size. "
                          "But received input tensor's dimension is %d, "
                          "axis's size is %d",
                          x_rank, axis_size));
48 49 50

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
51 52 53 54 55 56
      PADDLE_ENFORCE_GE(axis[i], 0,
                        platform::errors::InvalidArgument(
                            "The axis should be greater than or equal to 0."
                            "But received %d of axis[%d]",
                            axis[i], i));

57 58 59 60 61 62 63 64 65 66
      PADDLE_ENFORCE_EQ(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1, true,
          platform::errors::InvalidArgument(
              "Each element of Attribute axis should "
              "be a unique value range from 0 to (dims - 1), "
              "where the dims is the axis's size, "
              "unique value means this axis value can appear only once. "
              "But received axis[%d] is %d, axis_size is %d, "
              "count[axis[%d]] is %d",
              i, axis[i], axis_size, i, count[axis[i]]));
X
xzl 已提交
67
    }
X
xzl 已提交
68

X
xzl 已提交
69
    framework::DDim out_dims(x_dims);
J
Jacek Czaja 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
#ifdef PADDLE_WITH_MKLDNN
    // Here we need to match dims to paddle layout
    // as we are producing non-oneDNN result
    if ((x_dims.size() >= 3) &&
        (paddle::platform::MKLDNNDeviceContext::tls()
             .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC)) {
      auto dims = framework::vectorize<int>(x_dims);
      std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
      x_dims = x_dims.reshape(dims);
      VLOG(3)
          << "Rotating Shape in Transpose from: kMKLDNN to: kNHWC output_shape";
    }
#endif
83
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
84
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
85
    }
Q
Qiao Longfei 已提交
86
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
87
  }
88 89 90 91 92 93 94

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
95
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
96 97
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
98
        this->CanMKLDNNBeUsed(ctx, data_type)) {
99 100 101 102
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
103 104
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                   library_);
105
  }
X
xzl 已提交
106 107 108 109
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
110
  void Make() override {
111
    AddInput(
X
xzl 已提交
112
        "X",
113 114
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
115 116
    AddAttr<std::vector<int>>(
        "axis",
117 118 119
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
120 121
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
122 123
        .SetDefault(false)
        .AsExtra();
124 125 126 127 128 129
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
130 131
        .SetDefault("AnyLayout")
        .AsExtra();
132 133 134 135
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
136
        .SetDefault(false);
137 138 139 140 141 142
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
    /* int8 parameters */
X
xzl 已提交
143
    AddComment(R"DOC(
144 145
Transpose Operator.

146 147
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
148

149 150 151 152 153 154
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
155

156
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
157

158
    then the output $Y$ is:
W
wanghaoshuang 已提交
159

160 161 162 163 164 165
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
166

167
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
168
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
169

X
xzl 已提交
170 171 172 173 174 175 176 177
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

178
  void InferShape(framework::InferShapeContext *ctx) const override {
179 180 181
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "TransposeOpGrad");
Q
Qiao Longfei 已提交
182 183 184 185 186
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
187
  }
188 189 190 191 192 193 194

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
195 196
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
197 198
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
199
        this->CanMKLDNNBeUsed(ctx, data_type)) {
200 201 202 203
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
204 205
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                   library_);
206
  }
X
xzl 已提交
207 208
};

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
224
    OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Transpose2");
225 226 227 228 229 230 231 232 233 234 235 236 237
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
238 239
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
240 241
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
242
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
243 244
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "X");
245 246
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
247
        this->CanMKLDNNBeUsed(ctx, data_type)) {
248 249
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
250 251 252 253 254 255
      using framework::proto::VarType;
      auto input_data_type = ctx.Input<Tensor>("X")->type();
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
256 257
    }
#endif
258 259
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_, library_,
                                   customized_type_value);
260 261 262 263 264 265 266
  }
};

class Transpose2OpMaker : public TransposeOpMaker {
 public:
  void Make() override {
    TransposeOpMaker::Make();
267 268 269
    AddOutput("XShape", "(Tensor)The output tensor.")
        .AsIntermediate()
        .AsExtra();
270 271 272
  }
};

H
hong 已提交
273 274
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
275
 public:
H
hong 已提交
276
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
277

278
  void Apply(GradOpPtr<T> grad_op) const override {
279
    grad_op->SetType("transpose2_grad");
H
hong 已提交
280 281 282 283
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
284 285 286
  }
};

287 288 289 290 291 292 293 294 295 296 297 298 299 300
template <typename T>
class Transpose2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("transpose2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

301 302 303 304 305
class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
306 307 308 309
    OP_INOUT_CHECK(ctx->HasInput("XShape"), "Input", "XShape",
                   "Transpose2OpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Transpose2OpGrad");
310 311 312 313 314 315 316 317 318 319 320 321
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
      auto x_shape_dim =
          framework::slice_ddim(xshape_dim, 1, xshape_dim.size());
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
322 323 324
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
325 326 327
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx,
                                                framework::GradVarName("Out"));
328 329
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
330
        this->CanMKLDNNBeUsed(ctx, data_type)) {
331 332 333 334
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
335 336
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                   library_);
337 338 339
  }
};

X
xzl 已提交
340 341 342 343
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
344 345 346 347
REGISTER_OPERATOR(
    transpose, ops::TransposeOp, ops::TransposeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
348
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad);
349

Q
QI JUN 已提交
350
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
351
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
352 353
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext,
354
                         paddle::platform::complex<float>>,
355
    ops::TransposeKernel<paddle::platform::CPUDeviceContext,
356
                         paddle::platform::complex<double>>);
X
xzl 已提交
357 358
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
P
phlrain 已提交
359
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
360 361
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext,
362
                             paddle::platform::complex<float>>,
363
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext,
364
                             paddle::platform::complex<double>>);
365 366

REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
H
hong 已提交
367 368
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
369 370 371
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad,
                  ops::Transpose2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2DoubleGradMaker<paddle::imperative::OpBase>);
372 373

REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
374
    transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
375 376
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
377 378
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext,
379
                         paddle::platform::complex<float>>,
380
    ops::TransposeKernel<paddle::platform::CPUDeviceContext,
381
                         paddle::platform::complex<double>>);
382 383
REGISTER_OP_CPU_KERNEL(
    transpose2_grad,
384 385
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
386
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
387 388
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext,
389
                             paddle::platform::complex<float>>,
390
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext,
391
                             paddle::platform::complex<double>>);