transpose_op.cc 12.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16
#include <memory>
17
#include <string>
18
#include <vector>
X
xzl 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
24 25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
Q
Qiao Longfei 已提交
36 37
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
38
    size_t x_rank = x_dims.size();
X
xzl 已提交
39
    size_t axis_size = axis.size();
X
xzl 已提交
40

X
xzl 已提交
41
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
42 43 44 45 46 47
                      platform::errors::InvalidArgument(
                          "The input tensor's dimension "
                          "should be equal to the axis's size. "
                          "But received input tensor's dimension is %d, "
                          "axis's size is %d",
                          x_rank, axis_size));
48 49 50

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
51 52 53 54 55 56 57 58 59 60
      PADDLE_ENFORCE_EQ(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1, true,
          platform::errors::InvalidArgument(
              "Each element of Attribute axis should "
              "be a unique value range from 0 to (dims - 1), "
              "where the dims is the axis's size, "
              "unique value means this axis value can appear only once. "
              "But received axis[%d] is %d, axis_size is %d, "
              "count[axis[%d]] is %d",
              i, axis[i], axis_size, i, count[axis[i]]));
X
xzl 已提交
61
    }
X
xzl 已提交
62

X
xzl 已提交
63
    framework::DDim out_dims(x_dims);
64
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
65
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
66
    }
Q
Qiao Longfei 已提交
67
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
68
  }
69 70 71 72 73 74 75 76 77 78 79 80 81 82

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
83 84
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
85
        layout_, library_);
86
  }
X
xzl 已提交
87 88 89 90
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
91
  void Make() override {
92
    AddInput(
X
xzl 已提交
93
        "X",
94 95
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
96 97
    AddAttr<std::vector<int>>(
        "axis",
98 99 100
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
101 102 103 104 105 106 107 108 109 110
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
111 112 113 114
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
115
        .SetDefault(false);
116 117 118 119 120 121
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
    /* int8 parameters */
X
xzl 已提交
122
    AddComment(R"DOC(
123 124
Transpose Operator.

125 126
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
127

128 129 130 131 132 133
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
134

135
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
136

137
    then the output $Y$ is:
W
wanghaoshuang 已提交
138

139 140 141 142 143 144
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
145

146
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
147
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
148

X
xzl 已提交
149 150 151 152 153 154 155 156
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

157
  void InferShape(framework::InferShapeContext *ctx) const override {
158 159 160
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "TransposeOpGrad");
Q
Qiao Longfei 已提交
161 162 163 164 165
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
166
  }
167 168 169 170 171 172 173 174 175 176 177 178 179 180

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
181 182 183
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
184
  }
X
xzl 已提交
185 186
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
202
    OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Transpose2");
203 204 205 206 207 208 209 210 211 212 213 214 215
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
216 217
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
218 219
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
220 221 222 223 224 225
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
226 227 228 229 230 231
      using framework::proto::VarType;
      auto input_data_type = ctx.Input<Tensor>("X")->type();
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
232 233
    }
#endif
234 235
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
236
        layout_, library_, customized_type_value);
237 238 239 240 241 242 243 244 245 246 247
  }
};

class Transpose2OpMaker : public TransposeOpMaker {
 public:
  void Make() override {
    TransposeOpMaker::Make();
    AddOutput("XShape", "(Tensor)The output tensor.").AsIntermediate();
  }
};

H
hong 已提交
248 249
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
250
 public:
H
hong 已提交
251
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
252

253
  void Apply(GradOpPtr<T> grad_op) const override {
254
    grad_op->SetType("transpose2_grad");
H
hong 已提交
255 256 257 258
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
259 260 261 262 263 264 265 266
  }
};

class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
267 268 269 270
    OP_INOUT_CHECK(ctx->HasInput("XShape"), "Input", "XShape",
                   "Transpose2OpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Transpose2OpGrad");
271 272 273 274 275 276 277 278 279 280 281 282
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
      auto x_shape_dim =
          framework::slice_ddim(xshape_dim, 1, xshape_dim.size());
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
283 284 285 286 287 288 289 290 291 292
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
293 294 295
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
296 297 298
  }
};

X
xzl 已提交
299 300 301 302
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
303 304 305 306
REGISTER_OPERATOR(
    transpose, ops::TransposeOp, ops::TransposeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
307
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad);
308

Q
QI JUN 已提交
309
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
310 311
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
X
xzl 已提交
312 313
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
P
phlrain 已提交
314 315
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);
316 317

REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
H
hong 已提交
318 319
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
320 321 322
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad);

REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
323
    transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
324 325
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
326
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
327 328
REGISTER_OP_CPU_KERNEL(
    transpose2_grad,
329 330
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
331 332
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);