test_pipeline.py 8.3 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
import os
import shutil
import unittest
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
import math


def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
                  act=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) // 2,
        groups=groups,
        act=None,
        bias_attr=False)
    return fluid.layers.batch_norm(
        input=conv,
        act=act, )


def shortcut(input, ch_out, stride, is_first):
    ch_in = input.shape[1]
    if ch_in != ch_out or stride != 1 or is_first == True:
        return conv_bn_layer(input, ch_out, 1, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride):
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu')
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters,
        filter_size=3,
        stride=stride,
        act='relu')
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 4, filter_size=1, act=None)

    short = shortcut(input, num_filters * 4, stride, is_first=False)

    return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')


def basic_block(input, num_filters, stride, is_first):
    conv0 = conv_bn_layer(
        input=input,
        num_filters=num_filters,
        filter_size=3,
        act='relu',
        stride=stride)
    conv1 = conv_bn_layer(
        input=conv0, num_filters=num_filters, filter_size=3, act=None)
    short = shortcut(input, num_filters, stride, is_first)
    return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def build_network(input, layers=50, class_dim=1000):
    supported_layers = [18, 34, 50, 101, 152]
    assert layers in supported_layers
    depth = None
    if layers == 18:
        depth = [2, 2, 2, 2]
    elif layers == 34 or layers == 50:
        depth = [3, 4, 6, 3]
    elif layers == 101:
        depth = [3, 4, 23, 3]
    elif layers == 152:
        depth = [3, 8, 36, 3]
    num_filters = [64, 128, 256, 512]
    with fluid.device_guard("cpu"):
        conv = conv_bn_layer(
            input=input, num_filters=64, filter_size=7, stride=2, act='relu')
        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
    if layers >= 50:
        for block in range(len(depth)):
L
lilong12 已提交
103
            with fluid.device_guard("gpu:0"):
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                for i in range(depth[block]):
                    conv = bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1)

        with fluid.device_guard("gpu:0"):
            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
    else:
        for block in range(len(depth)):
L
lilong12 已提交
121
            with fluid.device_guard("gpu:0"):
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                for i in range(depth[block]):
                    conv = basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        is_first=block == i == 0)
        with fluid.device_guard("gpu:0"):
            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
    return out
138 139


H
hutuxian 已提交
140 141 142
class TestPipeline(unittest.TestCase):
    """  TestCases for Pipeline Training. """

L
lilong12 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    def _run(self, debug):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            with fluid.device_guard("cpu"):
                image = fluid.layers.data(
                    name="image", shape=[3, 224, 224], dtype="float32")
                label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[image, label],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)
                fc = build_network(image, layers=50)
            with fluid.device_guard("gpu:0"):
                out, prob = fluid.layers.softmax_with_cross_entropy(
                    logits=fc, label=label, return_softmax=True)
                loss = fluid.layers.mean(out)
                acc_top1 = fluid.layers.accuracy(input=prob, label=label, k=1)
                acc_top5 = fluid.layers.accuracy(input=prob, label=label, k=5)

            base_lr = 0.1
            passes = [30, 60, 80, 90]
            total_images = 1281167
            steps_per_pass = total_images // 128
            bd = [steps_per_pass * p for p in passes]
            lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
            lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
            optimizer = fluid.optimizer.MomentumOptimizer(
                lr_val,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            optimizer = fluid.optimizer.PipelineOptimizer(
                optimizer, num_microbatches=2)
            optimizer.minimize(loss)

        def train_reader():
            for _ in range(4):
                img = np.random.random(size=[3, 224, 224]).astype('float32')
                label = np.random.random(size=[1]).astype('int64')
                yield img, label

        data_loader.set_sample_generator(train_reader, batch_size=1)
        place = fluid.CPUPlace()

        # The following dataset is only used for the 
        # interface 'train_from_dataset'.
        # And it has no actual meaning.
        dataset = fluid.DatasetFactory().create_dataset('FileInstantDataset')
        dataset.set_batch_size(1)
        dataset.set_thread(1)
        dataset.set_filelist(['/tmp/tmp_2.txt'])
        dataset.set_use_var([image, label])
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        data_loader.start()
        exe.train_from_dataset(main_prog, dataset, debug=debug)

H
hutuxian 已提交
202
    def test_pipeline(self):
L
lilong12 已提交
203 204
        self._run(False)
        self._run(True)
205 206 207

    def test_pipeline_noneoptimizer(self):
        with fluid.device_guard("gpu:0"):
H
hutuxian 已提交
208 209 210 211 212 213 214 215 216 217
            x = fluid.layers.data(
                name='x', shape=[1], dtype='int64', lod_level=0)
            y = fluid.layers.data(
                name='y', shape=[1], dtype='int64', lod_level=0)
            emb_x = layers.embedding(
                input=x,
                param_attr=fluid.ParamAttr(name="embx"),
                size=[10, 2],
                is_sparse=False)

218
            fc = layers.fc(input=emb_x,
H
hutuxian 已提交
219 220 221 222 223 224
                           name="fc",
                           size=1,
                           num_flatten_dims=1,
                           bias_attr=False)
            loss = layers.reduce_mean(fc)

225 226
        optimizer = fluid.optimizer.SGD(learning_rate=0.5)
        with self.assertRaises(ValueError):
H
hutuxian 已提交
227
            optimizer = fluid.optimizer.PipelineOptimizer(
228
                dict(), num_microbatches=2)
H
hutuxian 已提交
229

H
hutuxian 已提交
230 231 232

if __name__ == '__main__':
    unittest.main()