test_pipeline.py 5.3 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
import os
import shutil
import unittest


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class TestPipelineConfig(unittest.TestCase):
    """  TestCases for Config in Pipeline Training. """

    def config(self, filelist_length, pipeline_num, reader_concurrency):
        filelist = []
        for i in range(filelist_length):
            filelist.append("file" + str(i))
        self.dataset.set_filelist(filelist)
        self.pipeline_opt["concurrency_list"][0] = reader_concurrency
        self.pipeline_num = pipeline_num

    def helper(self, in_filelist_length, in_pipeline_num, in_reader_concurrency,
               out_pipeline_num, out_reader_concurrency, out_dataset_thread):
        self.config(in_filelist_length, in_pipeline_num, in_reader_concurrency)
        res = self.exe._adjust_pipeline_resource(
            self.pipeline_opt, self.dataset, self.pipeline_num)
        self.assertEqual(self.pipeline_opt["concurrency_list"][0],
                         out_reader_concurrency)
        self.assertEqual(res, out_pipeline_num)
        self.assertEqual(self.dataset.thread_num, out_dataset_thread)

    def test_adjust_pipeline_resource(self):
        self.exe = fluid.Executor(fluid.CPUPlace())
        self.dataset = fluid.DatasetFactory().create_dataset(
            "FileInstantDataset")
        self.pipeline_opt = {"concurrency_list": [0, 1, 2]}
        self.pipeline_num = 0

        self.helper(7, 2, 2, 2, 2, 4)
        self.helper(7, 2, 3, 2, 3, 6)
        self.helper(7, 2, 4, 2, 3, 6)

        self.helper(8, 2, 3, 2, 3, 6)
        self.helper(8, 2, 4, 2, 4, 8)
        self.helper(8, 2, 5, 2, 4, 8)

        self.helper(3, 4, 1, 3, 1, 3)
        self.helper(3, 4, 2, 3, 1, 3)


H
hutuxian 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
class TestPipeline(unittest.TestCase):
    """  TestCases for Pipeline Training. """

    def test_pipeline(self):
        x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
        y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
        emb_x = layers.embedding(
            input=x,
            param_attr=fluid.ParamAttr(name="embx"),
            size=[10, 2],
            is_sparse=False)
        emb_y = layers.embedding(
            input=y,
            param_attr=fluid.ParamAttr(
                name="emby", learning_rate=0.9),
            size=[10, 2],
            is_sparse=False)

        concat = layers.concat([emb_x, emb_y], axis=1)

        fc = layers.fc(input=concat,
                       name="fc",
                       size=1,
                       num_flatten_dims=1,
                       bias_attr=False)
        loss = layers.reduce_mean(fc)

        optimizer = fluid.optimizer.SGD(learning_rate=0.5)
        optimizer = fluid.optimizer.PipelineOptimizer(
            optimizer,
            cut_list=[[emb_x, emb_y], [loss]],
            place_list=[
                fluid.CPUPlace(), fluid.CUDAPlace(0), fluid.CPUPlace()
            ],
            concurrency_list=[1, 1, 1],
            queue_size=1,
            sync_steps=10000000, )
        optimizer.minimize(loss)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        #prepare data
        batch_size = 100

        def binary_print(slot, fout):
            num = np.int16(len(slot) + 1)
            num.tofile(fout)
            a = np.int64(batch_size)
            a.tofile(fout)
            slot.tofile(fout)

        #batch1 = np.array([[0,1], [1,2], [2,3]]).astype("int64").reshape(batch_size,2,1)
        #batch2 = np.array([[1,2], [2,3], [3,4]]).astype("int64").reshape(batch_size,2,1)
        batch1 = np.ones(
            (batch_size, 2, 1)).astype("int64").reshape(batch_size, 2, 1)
        batch2 = np.ones(
            (batch_size, 2, 1)).astype("int64").reshape(batch_size, 2, 1)
        data = [batch1, batch2]
        filelist = []
        for i in range(2):
            filelist.append("test_pipeline_input_" + str(i))
        for f in filelist:
            with open(f, "wb") as fout:
                for batch_data in data:
                    for ins in batch_data:
                        for slot in ins:
                            binary_print(slot, fout)

        dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
        dataset.set_use_var([x, y])
        dataset.set_batch_size(batch_size)
        dataset.set_filelist(filelist)

        for epoch in range(1):
            exe.train_from_dataset(
                fluid.default_main_program(),
                dataset,
                thread=1,
                debug=False,
                fetch_list=[],
                fetch_info=[],
                print_period=1)

        for f in filelist:
            os.remove(f)


if __name__ == '__main__':
    unittest.main()