yolov3_loss_op.h 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
D
dengkaipeng 已提交
30 31
static inline bool LessEqualZero(T x) {
  return x < 1e-6;
32 33
}

34
template <typename T>
35
static T SigmoidCrossEntropy(T x, T label) {
36 37 38
  return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}

D
dengkaipeng 已提交
39
template <typename T>
40 41
static T L1Loss(T x, T y) {
  return std::abs(y - x);
D
dengkaipeng 已提交
42 43
}

44
template <typename T>
45
static T SigmoidCrossEntropyGrad(T x, T label) {
46 47 48
  return 1.0 / (1.0 + std::exp(-x)) - label;
}

D
dengkaipeng 已提交
49
template <typename T>
50 51
static T L1LossGrad(T x, T y) {
  return x > y ? 1.0 : -1.0;
D
dengkaipeng 已提交
52 53
}

D
dengkaipeng 已提交
54 55
static int GetMaskIndex(std::vector<int> mask, int val) {
  for (size_t i = 0; i < mask.size(); i++) {
56 57 58 59 60 61 62 63 64
    if (mask[i] == val) {
      return i;
    }
  }
  return -1;
}

template <typename T>
struct Box {
65
  T x, y, w, h;
66 67 68 69 70 71 72 73
};

template <typename T>
static inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
74 75 76
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
                                int j, int an_idx, int grid_size,
                                int input_size, int index, int stride) {
77 78 79 80 81 82 83 84 85
  Box<T> b;
  b.x = (i + sigmoid<T>(x[index])) / grid_size;
  b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
  b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
  b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
  return b;
}

template <typename T>
D
dengkaipeng 已提交
86
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
87 88 89 90 91 92 93 94 95
  Box<T> b;
  b.x = gt[(batch * max_boxes + idx) * 4];
  b.y = gt[(batch * max_boxes + idx) * 4 + 1];
  b.w = gt[(batch * max_boxes + idx) * 4 + 2];
  b.h = gt[(batch * max_boxes + idx) * 4 + 3];
  return b;
}

template <typename T>
D
dengkaipeng 已提交
96
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
97 98 99 100 101 102 103 104 105 106
  T l1 = c1 - w1 / 2.0;
  T l2 = c2 - w2 / 2.0;
  T left = l1 > l2 ? l1 : l2;
  T r1 = c1 + w1 / 2.0;
  T r2 = c2 + w2 / 2.0;
  T right = r1 < r2 ? r1 : r2;
  return right - left;
}

template <typename T>
D
dengkaipeng 已提交
107 108 109
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
  T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
  T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
110 111 112 113 114
  T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
  T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
  return inter_area / union_area;
}

D
dengkaipeng 已提交
115 116
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
                                int an_stride, int stride, int entry) {
117 118 119 120 121 122 123
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
                                std::vector<int> anchors, int an_idx,
                                int box_idx, int gi, int gj, int grid_size,
124
                                int input_size, int stride, T score) {
125 126 127 128 129
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

130
  T scale = (2.0 - gt.w * gt.h) * score;
131 132
  loss[0] += SigmoidCrossEntropy<T>(input[box_idx], tx) * scale;
  loss[0] += SigmoidCrossEntropy<T>(input[box_idx + stride], ty) * scale;
133 134
  loss[0] += L1Loss<T>(input[box_idx + 2 * stride], tw) * scale;
  loss[0] += L1Loss<T>(input[box_idx + 3 * stride], th) * scale;
135 136 137 138 139 140
}

template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
                                    Box<T> gt, std::vector<int> anchors,
                                    int an_idx, int box_idx, int gi, int gj,
141 142
                                    int grid_size, int input_size, int stride,
                                    T score) {
143 144 145 146 147
  T tx = gt.x * grid_size - gi;
  T ty = gt.y * grid_size - gj;
  T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
  T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);

148
  T scale = (2.0 - gt.w * gt.h) * score;
149 150
  input_grad[box_idx] =
      SigmoidCrossEntropyGrad<T>(input[box_idx], tx) * scale * loss;
151
  input_grad[box_idx + stride] =
152
      SigmoidCrossEntropyGrad<T>(input[box_idx + stride], ty) * scale * loss;
153
  input_grad[box_idx + 2 * stride] =
154
      L1LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
155
  input_grad[box_idx + 3 * stride] =
156
      L1LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
157 158 159 160
}

template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
D
dengkaipeng 已提交
161
                                 const int label, const int class_num,
162 163
                                 const int stride, const T pos, const T neg,
                                 T score) {
D
dengkaipeng 已提交
164 165
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
166
    loss[0] += SigmoidCrossEntropy<T>(pred, (i == label) ? pos : neg) * score;
167 168 169 170 171 172
  }
}

template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
                                     const T* input, const int index,
D
dengkaipeng 已提交
173
                                     const int label, const int class_num,
174 175
                                     const int stride, const T pos, const T neg,
                                     T score) {
D
dengkaipeng 已提交
176 177 178
  for (int i = 0; i < class_num; i++) {
    T pred = input[index + i * stride];
    input_grad[index + i * stride] =
179 180
        SigmoidCrossEntropyGrad<T>(pred, (i == label) ? pos : neg) * score *
        loss;
181 182 183 184
  }
}

template <typename T>
D
dengkaipeng 已提交
185
static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
186 187 188 189 190 191 192
                                   const int n, const int an_num, const int h,
                                   const int w, const int stride,
                                   const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
193
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
194
          if (obj > 1e-5) {
195 196
            // positive sample: obj = mixup score
            loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 1.0) * obj;
D
dengkaipeng 已提交
197 198
          } else if (obj > -0.5) {
            // negetive sample: obj = 0
199
            loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 0.0);
200 201 202 203 204 205 206 207 208 209 210
          }
        }
      }
      objness += stride;
      input += an_stride;
    }
  }
}

template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
D
dengkaipeng 已提交
211
                                       const T* input, const T* objness,
212 213 214 215 216 217 218
                                       const int n, const int an_num,
                                       const int h, const int w,
                                       const int stride, const int an_stride) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
D
dengkaipeng 已提交
219
          T obj = objness[k * w + l];
D
dengkaipeng 已提交
220
          if (obj > 1e-5) {
221
            input_grad[k * w + l] =
222 223
                SigmoidCrossEntropyGrad<T>(input[k * w + l], 1.0) * obj *
                loss[i];
D
dengkaipeng 已提交
224
          } else if (obj > -0.5) {
225 226
            input_grad[k * w + l] =
                SigmoidCrossEntropyGrad<T>(input[k * w + l], 0.0) * loss[i];
227 228 229 230 231 232 233 234 235 236
          }
        }
      }
      objness += stride;
      input += an_stride;
      input_grad += an_stride;
    }
  }
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
                           const int b) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
      if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
        valid[j] = false;
      } else {
        valid[j] = true;
      }
    }
    valid += b;
    gtbox += b * 4;
  }
}

253
template <typename T>
254 255 256 257
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
258 259
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
260
    auto* gt_score = ctx.Input<Tensor>("GTScore");
D
dengkaipeng 已提交
261
    auto* loss = ctx.Output<Tensor>("Loss");
262 263
    auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
264
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
265
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
266 267
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
268
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
269
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
270 271 272 273 274

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;
275 276
    const int mask_num = anchor_mask.size();
    const int b = gt_box->dims()[1];
277
    int input_size = downsample_ratio * h;
278

279 280 281
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

282 283 284 285 286 287 288
    T label_pos = 1.0;
    T label_neg = 0.0;
    if (use_label_smooth) {
      label_pos = 1.0 - 1.0 / static_cast<T>(class_num);
      label_neg = 1.0 / static_cast<T>(class_num);
    }

289 290 291
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
292
    const T* gt_score_data = gt_score->data<T>();
293
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
D
dengkaipeng 已提交
294
    memset(loss_data, 0, loss->numel() * sizeof(T));
D
dengkaipeng 已提交
295 296 297
    T* obj_mask_data =
        objness_mask->mutable_data<T>({n, mask_num, h, w}, ctx.GetPlace());
    memset(obj_mask_data, 0, objness_mask->numel() * sizeof(T));
298 299
    int* gt_match_mask_data =
        gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
300

301 302 303 304 305 306
    // calc valid gt box mask, avoid calc duplicately in following code
    Tensor gt_valid_mask;
    bool* gt_valid_mask_data =
        gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
    GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);

307 308 309 310
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < mask_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
311 312
            // each predict box find a best match gt box, if overlap is bigger
            // then ignore_thresh, ignore the objectness loss.
313
            int box_idx =
D
dengkaipeng 已提交
314 315 316
                GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
            Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
                                     h, input_size, box_idx, stride);
317 318
            T best_iou = 0;
            for (int t = 0; t < b; t++) {
319
              if (!gt_valid_mask_data[i * b + t]) {
320 321
                continue;
              }
322
              Box<T> gt = GetGtBox(gt_box_data, i, b, t);
D
dengkaipeng 已提交
323
              T iou = CalcBoxIoU(pred, gt);
324 325 326 327 328
              if (iou > best_iou) {
                best_iou = iou;
              }
            }

329
            // If best IoU is bigger then ignore_thresh,
330
            // ignore the objectness loss.
331 332
            if (best_iou > ignore_thresh) {
              int obj_idx = (i * mask_num + j) * stride + k * w + l;
D
dengkaipeng 已提交
333
              obj_mask_data[obj_idx] = static_cast<T>(-1);
334
            }
335 336 337
            // all losses should be calculated if best IoU
            // is bigger then truth thresh, but currently,
            // truth thresh is an unreachable value as 1.0.
338 339 340 341
          }
        }
      }
      for (int t = 0; t < b; t++) {
342
        if (!gt_valid_mask_data[i * b + t]) {
343
          gt_match_mask_data[i * b + t] = -1;
344 345
          continue;
        }
346
        Box<T> gt = GetGtBox(gt_box_data, i, b, t);
347 348 349 350 351 352 353
        int gi = static_cast<int>(gt.x * w);
        int gj = static_cast<int>(gt.y * h);
        Box<T> gt_shift = gt;
        gt_shift.x = 0.0;
        gt_shift.y = 0.0;
        T best_iou = 0.0;
        int best_n = 0;
354 355 356
        // each gt box find a best match anchor box as positive sample,
        // for positive sample, all losses should be calculated, and for
        // other samples, only objectness loss is required.
357 358 359 360 361 362
        for (int an_idx = 0; an_idx < an_num; an_idx++) {
          Box<T> an_box;
          an_box.x = 0.0;
          an_box.y = 0.0;
          an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
          an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
D
dengkaipeng 已提交
363
          float iou = CalcBoxIoU<T>(an_box, gt_shift);
364 365 366 367 368 369
          if (iou > best_iou) {
            best_iou = iou;
            best_n = an_idx;
          }
        }

D
dengkaipeng 已提交
370
        int mask_idx = GetMaskIndex(anchor_mask, best_n);
371
        gt_match_mask_data[i * b + t] = mask_idx;
372
        if (mask_idx >= 0) {
373
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
374 375
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
376
          CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
377
                                 box_idx, gi, gj, h, input_size, stride, score);
378 379

          int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
380
          obj_mask_data[obj_idx] = score;
381 382

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
383 384
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
D
dengkaipeng 已提交
385
          CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
386
                           class_num, stride, label_pos, label_neg, score);
387 388 389 390
        }
      }
    }

391
    CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
392
                       mask_num, h, w, stride, an_stride);
393 394 395
  }
};

396
template <typename T>
397 398 399
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
400
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
401 402
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
403
    auto* gt_score = ctx.Input<Tensor>("GTScore");
404 405
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
406 407
    auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
    auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
408
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
409
    auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
410
    int class_num = ctx.Attr<int>("class_num");
411
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
412
    bool use_label_smooth = ctx.Attr<bool>("use_label_smooth");
413

414 415 416 417
    const int n = input_grad->dims()[0];
    const int c = input_grad->dims()[1];
    const int h = input_grad->dims()[2];
    const int w = input_grad->dims()[3];
418
    const int mask_num = anchor_mask.size();
419
    const int b = gt_match_mask->dims()[1];
420
    int input_size = downsample_ratio * h;
421

422 423 424
    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

425 426 427 428 429 430 431
    T label_pos = 1.0;
    T label_neg = 0.0;
    if (use_label_smooth) {
      label_pos = 1.0 - 1.0 / static_cast<T>(class_num);
      label_neg = 1.0 / static_cast<T>(class_num);
    }

432 433 434
    const T* input_data = input->data<T>();
    const T* gt_box_data = gt_box->data<T>();
    const int* gt_label_data = gt_label->data<int>();
435
    const T* gt_score_data = gt_score->data<T>();
436
    const T* loss_grad_data = loss_grad->data<T>();
D
dengkaipeng 已提交
437
    const T* obj_mask_data = objness_mask->data<T>();
438
    const int* gt_match_mask_data = gt_match_mask->data<int>();
439 440
    T* input_grad_data =
        input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
441 442 443 444
    memset(input_grad_data, 0, input_grad->numel() * sizeof(T));

    for (int i = 0; i < n; i++) {
      for (int t = 0; t < b; t++) {
445
        int mask_idx = gt_match_mask_data[i * b + t];
446
        if (mask_idx >= 0) {
447
          T score = gt_score_data[i * b + t];
D
dengkaipeng 已提交
448 449 450 451
          Box<T> gt = GetGtBox(gt_box_data, i, b, t);
          int gi = static_cast<int>(gt.x * w);
          int gj = static_cast<int>(gt.y * h);

D
dengkaipeng 已提交
452 453
          int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                      an_stride, stride, 0);
454 455 456 457
          CalcBoxLocationLossGrad<T>(input_grad_data, loss_grad_data[i],
                                     input_data, gt, anchors,
                                     anchor_mask[mask_idx], box_idx, gi, gj, h,
                                     input_size, stride, score);
458 459

          int label = gt_label_data[i * b + t];
D
dengkaipeng 已提交
460 461
          int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
                                        an_stride, stride, 5);
462
          CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
463 464
                               label_idx, label, class_num, stride, label_pos,
                               label_neg, score);
465 466 467 468 469
        }
      }
    }

    CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
470
                           input_data + 4 * stride, obj_mask_data, n, mask_num,
471
                           h, w, stride, an_stride);
472 473 474 475 476
  }
};

}  // namespace operators
}  // namespace paddle