nccl_op.cu 4.8 KB
Newer Older
D
Dong Zhihong 已提交
1 2 3 4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
Dong Zhihong 已提交
5 6
http://www.apache.org/licenseshashernless required by applicable law or agreed
to in writing, software
D
Dong Zhihong 已提交
7 8 9 10 11 12
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
D
Dong Zhihong 已提交
13 14
#include <functional>

D
Dong Zhihong 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/operators/nccl_op.h"

namespace paddle {
namespace operators {

template <typename T>
class NCCLAllReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

    auto ins = ctx.MultiInput<Tensor>("X");
    auto outs = ctx.MultiOutput<Tensor>("Out");

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);

    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
41
      PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
D
Dong Zhihong 已提交
42
          ins[i]->data<T>(), outs[i]->mutable_data<T>(ctx.GetPlace()),
D
Dong Zhihong 已提交
43
          outs[i]->numel() * sizeof(T), NCCLTypeWrapper<T>::type, ncclSum,
D
Dong Zhihong 已提交
44 45 46 47 48 49
          comm->comms_[idx], stream));
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
    }
  }
};

D
Dong Zhihong 已提交
50 51 52 53 54 55 56
template <typename T>
class NCCLReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
57
    auto ins = ctx.MultiInput<Tensor>("X");  // x0, x1, x2
D
Dong Zhihong 已提交
58 59 60 61 62 63 64 65 66 67 68 69
    auto outs = ctx.MultiOutput<Tensor>("Out");

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);

D
Dong Zhihong 已提交
70 71
    auto ins_names = ctx.Inputs("X");
    std::hash<std::string> hasher;
D
Dong Zhihong 已提交
72
    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
73
      int root = hasher(ins_names[i]) % comm->comms_.size();
D
Dong Zhihong 已提交
74 75 76 77
      T* recvbuffer = nullptr;
      if (root == device_id) {
        recvbuffer = outs[i]->mutable_data<T>(ctx.GetPlace());
      }
D
Dong Zhihong 已提交
78 79 80
      PADDLE_ENFORCE(platform::dynload::ncclReduce(
          ins[i]->data<T>(), recvbuffer, ins[i]->numel(),
          NCCLTypeWrapper<T>::type, ncclSum, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
    }
  }
};

template <typename T>
class NCCLBcastKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

    int root = ctx.Attr<int>("root");

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);
    if (idx == root) {
      auto ins = ctx.MultiInput<Tensor>("X");
      for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
107 108 109
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            (void*)ins[i]->data<T>(), ins[i]->numel(), NCCLTypeWrapper<T>::type,
            root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
110 111 112 113 114
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      }
    } else {
      auto outs = ctx.MultiOutput<Tensor>("Out");
      for (size_t i = 0; i < outs.size(); ++i) {
D
Dong Zhihong 已提交
115 116 117
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            outs[i]->mutable_data<T>(ctx.GetPlace()), outs[i]->numel(),
            NCCLTypeWrapper<T>::type, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
118 119 120 121 122 123
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      }
    }
  }
};

D
Dong Zhihong 已提交
124 125 126 127 128
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel<float>);
D
Dong Zhihong 已提交
129 130 131
REGISTER_OP_GPU_KERNEL(ncclBcastSend, ops::NCCLBcastKernel<float>);
REGISTER_OP_GPU_KERNEL(ncclReduce, ops::NCCLReduceKernel<float>);
REGISTER_OP_GPU_KERNEL(ncclBcastRecv, ops::NCCLBcastKernel<float>);