/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenseshashernless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #define EIGEN_USE_GPU #include #include "paddle/operators/nccl_op.h" namespace paddle { namespace operators { template class NCCLAllReduceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "This kernel only runs on GPU device."); auto ins = ctx.MultiInput("X"); auto outs = ctx.MultiOutput("Out"); auto* comm = ctx.Input("Communicator"); auto stream = reinterpret_cast( ctx.device_context()) .stream(); // device id int device_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(device_id); for (size_t i = 0; i < ins.size(); ++i) { PADDLE_ENFORCE(platform::dynload::ncclAllReduce( ins[i]->data(), outs[i]->mutable_data(ctx.GetPlace()), outs[i]->numel() * sizeof(T), NCCLTypeWrapper::type, ncclSum, comm->comms_[idx], stream)); PADDLE_ENFORCE(cudaStreamSynchronize(stream)); } } }; template class NCCLReduceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "This kernel only runs on GPU device."); auto ins = ctx.MultiInput("X"); // x0, x1, x2 auto outs = ctx.MultiOutput("Out"); auto* comm = ctx.Input("Communicator"); auto stream = reinterpret_cast( ctx.device_context()) .stream(); // device id int device_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(device_id); auto ins_names = ctx.Inputs("X"); std::hash hasher; for (size_t i = 0; i < ins.size(); ++i) { int root = hasher(ins_names[i]) % comm->comms_.size(); T* recvbuffer = nullptr; if (root == device_id) { recvbuffer = outs[i]->mutable_data(ctx.GetPlace()); } PADDLE_ENFORCE(platform::dynload::ncclReduce( ins[i]->data(), recvbuffer, ins[i]->numel(), NCCLTypeWrapper::type, ncclSum, root, comm->comms_[idx], stream)); PADDLE_ENFORCE(cudaStreamSynchronize(stream)); } } }; template class NCCLBcastKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "This kernel only runs on GPU device."); int root = ctx.Attr("root"); auto* comm = ctx.Input("Communicator"); auto stream = reinterpret_cast( ctx.device_context()) .stream(); // device id int device_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(device_id); if (idx == root) { auto ins = ctx.MultiInput("X"); for (size_t i = 0; i < ins.size(); ++i) { PADDLE_ENFORCE(platform::dynload::ncclBcast( (void*)ins[i]->data(), ins[i]->numel(), NCCLTypeWrapper::type, root, comm->comms_[idx], stream)); PADDLE_ENFORCE(cudaStreamSynchronize(stream)); } } else { auto outs = ctx.MultiOutput("Out"); for (size_t i = 0; i < outs.size(); ++i) { PADDLE_ENFORCE(platform::dynload::ncclBcast( outs[i]->mutable_data(ctx.GetPlace()), outs[i]->numel(), NCCLTypeWrapper::type, root, comm->comms_[idx], stream)); PADDLE_ENFORCE(cudaStreamSynchronize(stream)); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel); REGISTER_OP_GPU_KERNEL(ncclBcastSend, ops::NCCLBcastKernel); REGISTER_OP_GPU_KERNEL(ncclReduce, ops::NCCLReduceKernel); REGISTER_OP_GPU_KERNEL(ncclBcastRecv, ops::NCCLBcastKernel);