learning_rate_scheduler.py 5.7 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .. import unique_name

19 20 21
__all__ = [
    'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay', 'InverseTimeDecay'
]
M
minqiyang 已提交
22 23 24 25 26 27 28


class LearningRateDecay(object):
    """
    Base class of learning rate decay
    """

M
minqiyang 已提交
29 30 31
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
32 33 34 35 36 37
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
            lr = self._create_lr_var(lr)
M
minqiyang 已提交
38
        self.step_num += self.step_size
M
minqiyang 已提交
39 40
        return lr

M
minqiyang 已提交
41 42
    def create_lr_var(self, lr):
        from .. import layers
M
minqiyang 已提交
43 44 45 46 47 48
        lr = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
            persistable=True)
M
minqiyang 已提交
49
        return lr
M
minqiyang 已提交
50 51 52 53 54

    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
55 56 57
class PiecewiseDecay(LearningRateDecay):
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
        super(PiecewiseDecay, self).__init__(begin, step, dtype)
M
minqiyang 已提交
58 59 60 61 62 63 64 65
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
            self.vars.append(self.create_lr_var(value))

    def step(self):
M
minqiyang 已提交
66 67
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
68
                return self.vars[i]
M
minqiyang 已提交
69
        return self.vars[len(self.values) - 1]
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183


class NaturalExpDecay(LearningRateDecay):
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(NaturalExpDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)
        decayed_lr = self.learning_rate * layers.exp(-1 * self.decay_rate *
                                                     div_res)

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(ExponentialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(InverseTimeDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 end_learning_rate=0.0001,
                 power=1.0,
                 cycle=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(PolynomialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
        from .. import layers
        if self.cycle:
            div_res = layers.ceil(
                self.create_lr_var(self.step_num / self.decay_steps))
            zero_var = 0.0
            one_var = 1.0

            if float(self.step_num) == zero_var:
                div_res = one_var
            decay_steps = self.decay_steps * div_res
        else:
            global_step = global_step if global_step < self.decay_steps else self.decay_steps

            decayed_lr = (self.learning_rate - self.end_learning_rate) * \
                ((1 - global_step / self.decay_steps) ** self.power) + self.end_learning_rate
        return self.create_lr_var(decayed_lr)