dist_matmul.py 96.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
C
caozhou 已提交
16

Z
zhaoyingli 已提交
17
from .common import infer_shape
18
from .common import DistributedOperatorImplContainer
19
from .common import DistributedOperatorImpl
20
from .common import register_distributed_operator_impl_container
21
from .common import register_distributed_operator_impl
J
JZ-LIANG 已提交
22
from .common import set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program, is_parameter_related
23 24 25 26 27 28
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
29
from ..utils import set_dist_op_desc_original_id
30
from ..dist_attribute import OperatorDistributedAttribute
31
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
32
from paddle.fluid.framework import _non_static_mode
33 34
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
35
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
36
from ..process_group import new_process_group
37
from ..utils import _get_comm_group, _get_corresponding_rank
38
from .dist_default import DistributedDefaultImpl0
C
caozhou 已提交
39 40 41 42
from ..cost import build_comp_desc_from_dist_op, build_comm_desc_from_dist_op, build_dp_costs
from ..cost import build_comm_costs_from_descs, build_comp_costs_from_descs
from ..cost import MatmulV2OpCost, MatmulOpCost, MulOpCost, IdentityOpCost, AllreduceSumOpCost
from ..cost import MatmulV2GradOpCost, MatmulGradOpCost, MulGradOpCost
43 44


45
def copy_op_with_new_input_output(ctx, block, src_op, **kwargs):
46
    dist_op_desc = block.append_op(type='nop').desc
47
    dist_op_desc.copy_from(src_op.desc)
48
    set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
49 50 51 52 53 54 55 56 57 58
    for input_name in src_op.desc.input_names():
        assert input_name in kwargs
        dist_op_desc.set_input(input_name, kwargs[input_name])
    for output_name in src_op.desc.output_names():
        assert input_name in kwargs
        dist_op_desc.set_output(output_name, kwargs[output_name])

    return dist_op_desc


59
def _update_dims_mapping_for_matmul(dist_op):
60
    changed = False
61 62
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
63 64 65
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
C
caozhou 已提交
66 67 68 69 70 71 72 73
    trans_x = None
    trans_y = None
    if op_desc.type() == "matmul_v2":
        trans_x = op_desc.attr('trans_x')
        trans_y = op_desc.attr('trans_y')
    elif op_desc.type() == "matmul":
        trans_x = op_desc.attr('transpose_X')
        trans_y = op_desc.attr('transpose_Y')
74 75 76 77 78 79 80 81 82
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
C
caozhou 已提交
83
        assert trans_x is False
84
        x_dims_mapping.insert(0, -1)
C
caozhou 已提交
85
        out_dims_mapping.insert(out_dims_mapping_len - 1, 0)
86
    if y_dims_mapping_len == 1:
C
caozhou 已提交
87
        assert trans_y is False
88
        y_dims_mapping.insert(1, -1)
C
caozhou 已提交
89
        out_dims_mapping.insert(out_dims_mapping_len, 0)
90

C
caozhou 已提交
91 92 93
    new_x_dims_mapping_len = len(x_dims_mapping)
    new_y_dims_mapping_len = len(y_dims_mapping)
    new_out_dims_mapping_len = len(out_dims_mapping)
94
    # Deal with dim > 2 and take care of broadcasting
C
caozhou 已提交
95
    if new_out_dims_mapping_len > 2:
96 97 98 99
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

C
caozhou 已提交
100
        for i in range(new_out_dims_mapping_len - new_x_dims_mapping_len):
101
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
C
caozhou 已提交
102
        for i in range(new_x_dims_mapping_len - 2):
103 104
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

C
caozhou 已提交
105
        for i in range(new_out_dims_mapping_len - new_y_dims_mapping_len):
106
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
C
caozhou 已提交
107
        for i in range(new_y_dims_mapping_len - 2):
108 109
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

C
caozhou 已提交
110
        for i in range(new_out_dims_mapping_len - 2):
111 112 113 114 115 116
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
117 118
        if compatible_dims_mapping is None:
            return False
119

C
caozhou 已提交
120 121
        for i in range(new_x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - new_x_dims_mapping_len)
122 123 124 125
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

C
caozhou 已提交
126 127
        for i in range(new_y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - new_y_dims_mapping_len)
128 129 130 131
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

C
caozhou 已提交
132
        for i in range(new_out_dims_mapping_len - 2):
133 134 135 136
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

C
caozhou 已提交
137 138 139 140 141 142 143
    if trans_x:
        x_dims_mapping[-1], x_dims_mapping[-2] = x_dims_mapping[
            -2], x_dims_mapping[-1]
    if trans_y:
        y_dims_mapping[-1], y_dims_mapping[-2] = y_dims_mapping[
            -2], y_dims_mapping[-1]

144
    # The following which uses negative index can be work
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

C
caozhou 已提交
161 162 163 164 165 166 167
    if trans_x:
        x_dims_mapping[-1], x_dims_mapping[-2] = x_dims_mapping[
            -2], x_dims_mapping[-1]
    if trans_y:
        y_dims_mapping[-1], y_dims_mapping[-2] = y_dims_mapping[
            -2], y_dims_mapping[-1]

168
    # Remove unnecessary dim mapping to make sure the length of dims_mapping is same as its tensor
169 170
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
C
caozhou 已提交
171
        out_dims_mapping.pop(out_dims_mapping_len - 1)
172 173
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)
C
caozhou 已提交
174
        out_dims_mapping.pop(out_dims_mapping_len)
175 176 177 178 179 180 181 182

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
def _is_auto_compatible_for_matmul(dist_op):
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    # Deep copy these dims_mappings for keeping them unchanged.
    x_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(x_name))
    y_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(y_name))
    out_dims_mapping = copy.deepcopy(
        op_dist_attr.get_output_dims_mapping(out_name))
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

204 205 206
    # NOTE: Partition is not supported if matmul op has trans.
    if op_desc.type() == "matmul_v2":
        if op_desc.attr('trans_x') or op_desc.attr('trans_y'):
207 208
            if x_dims_mapping[-2:] != [-1, -1
                                       ] or y_dims_mapping[-2:] != [-1, -1]:
209 210 211
                return False
    elif op_desc.type() == "matmul":
        if op_desc.attr('transpose_X') or op_desc.attr('transpose_Y'):
212 213
            if x_dims_mapping[-2:] != [-1, -1
                                       ] or y_dims_mapping[-2:] != [-1, -1]:
214 215
                return False

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    # Deal with dim > 2 and take care of broadcasting
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

235 236
        is_same = ((broadcast_x_dims_mapping == broadcast_y_dims_mapping)
                   and (broadcast_x_dims_mapping == broadcast_out_dims_mapping))
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        if not is_same:
            return False

    # The following which uses negative index can be work
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    is_same = (x_dims_mapping[-1] == y_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (x_dims_mapping[-2] == out_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (y_dims_mapping[-1] == out_dims_mapping[-1])
    if not is_same:
        return False

    return True


257 258 259 260
def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):

    # by now the backward function only insert the gradient allreduce for dist op itself

261
    dist_op_context = ctx.dist_op_context
262 263 264
    main_block = dist_op_context.work_block
    backward_op = dist_op_context.cur_src_op
    rank_id = dist_op_context.rank_id
265
    dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
266 267 268 269
    assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
        str(backward_op))

    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
270 271
    if rank_id not in dist_attr.process_mesh.processes:
        rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh, rank_id)
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

    assert 'Y' in kwargs, "input [{}] is not given".format('Y')
    assert 'X' in kwargs, "input [{}] is not given".format('X')
    assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out@GRAD')
    assert 'Y@GRAD' in kwargs, "output [{}] is not given".format('Y@GRAD')
    assert 'X@GRAD' in kwargs, "output [{}] is not given".format('X@GRAD')
    assert len(
        kwargs['Y']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Y'])
    assert len(
        kwargs['X']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['X'])
    assert len(
        kwargs['Out@GRAD']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Out'])
    assert len(
        kwargs['Y@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['Y@GRAD'])

    X_var = main_block.var(kwargs['X'][0])
296
    Y_var = main_block._var_recursive(kwargs['Y'][0])
297 298 299
    Out_grad = main_block.var(kwargs['Out@GRAD'][0])
    Y_grad = main_block.var(kwargs['Y@GRAD'][0])

J
JZ-LIANG 已提交
300 301 302
    assert not is_parameter_related(
        X_var.name, main_block
    ), "left operand(X) [{}] of dist matmul should not be parameter".format(
303 304
        X_var.name)

305 306 307
    Y_var_dim_mapping = dist_attr.get_input_dims_mapping(Y_var.name)
    process_mesh_shape = dist_attr.process_mesh.topology
    process_mesh_group = dist_attr.process_mesh.processes
308 309 310 311
    # assert len(
    #     Y_var_dim_mapping
    # ) == 2, "dist matmual only support Y operand with 2 dims now but Y({})'s dim is [{}]".format(
    #     Y_var.name, Y_var_dim_mapping)
312 313 314 315 316 317
    Y_var_partitioned = False
    for dim in Y_var_dim_mapping:
        if dim >= 0 and process_mesh_shape[dim] > 0:
            Y_var_partitioned = True
            break

J
JZ-LIANG 已提交
318
    if is_parameter_related(Y_var.name, main_block) and Y_var_partitioned:
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

        if Y_var_dim_mapping[0] >= 0:
            # row parallel: c_identity + matmul
            assert Y_var_dim_mapping[1] < 0
            parallel_axis = Y_var_dim_mapping[0]

            check_variable_and_dtype(
                Out_grad, 'tensor',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                '_c_identity')

            intermediate_var_0 = main_block.create_var(
                name=unique_name.generate_with_ignorable_key(".".join(
                    ["c_identity", 'tmp'])) + "@GRAD",
                dtype=Out_grad.dtype,
                shape=Out_grad.shape,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=Out_grad.stop_gradient)

            # copy X_var's dist_attr to intermediate_var_0's dist_attr
            out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
            assert out_grad_dist_attr is not None
            ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                 out_grad_dist_attr)

345 346 347
            group_ranks = _get_comm_group(process_mesh_group,
                                          process_mesh_shape, parallel_axis,
                                          rank_id)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            group = new_process_group(group_ranks)
            c_identity_op = main_block.append_op(
                type='c_identity',
                inputs={'X': [Out_grad]},
                outputs={'Out': intermediate_var_0},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True,
                    OP_ROLE_KEY: OpRole.Backward,
                })
            check_variable_and_dtype(intermediate_var_0, 'x',
                                     ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(intermediate_var_0.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
364 365 366
            set_comm_op_dist_attr_for_program(c_identity_op,
                                              dist_attr.process_mesh,
                                              out_grad_dist_attr, ctx)
367 368 369 370

            new_kwargs = copy.deepcopy(kwargs)
            new_kwargs['Out@GRAD'] = [intermediate_var_0.name]
            matmul_op_desc = copy_op_with_new_input_output(
371
                ctx, main_block, backward_op, **new_kwargs)
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        else:
            # col parallel: matmul + allreduce
            assert Y_var_dim_mapping[0] < 0
            parallel_axis = Y_var_dim_mapping[1]
            new_kwargs = copy.deepcopy(kwargs)

            # NOTE (JZ-LIANG) should allow left operand be empty for matmul grad
            has_x_grad = len(kwargs['X@GRAD']) > 0
            if has_x_grad:
                assert len(kwargs['X@GRAD']) == 1
                X_grad = main_block.var(kwargs['X@GRAD'][0])
                intermediate_var_0 = main_block.create_var(
                    name=unique_name.generate_with_ignorable_key(".".join(
                        ["c_identity", 'tmp'])) + "@GRAD",
                    dtype=X_grad.dtype,
                    shape=X_grad.shape,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=X_grad.stop_gradient)

                X_grad_dist_attr = dist_attr.get_output_dist_attr(X_grad.name)
                assert X_grad_dist_attr is not None
                ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                     X_grad_dist_attr)
                new_kwargs['X@GRAD'] = [intermediate_var_0.name]

            matmul_op_desc = copy_op_with_new_input_output(
399
                ctx, main_block, backward_op, **new_kwargs)
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

            # NOTE (JZ-LIANG) trick to skip one allreduce if left operand has not grad
            if has_x_grad:
                group_ranks = _get_comm_group(process_mesh_group,
                                              process_mesh_shape, parallel_axis,
                                              rank_id)
                group = new_process_group(group_ranks)
                c_allreduce_sum_op = main_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': [intermediate_var_0.name]},
                    outputs={'Out': kwargs['X@GRAD']},
                    attrs={
                        'ring_id': group.id,
                        'use_calc_stream': True,
                        'use_model_parallel': True,
                        OP_ROLE_KEY: OpRole.Backward
                    })
                set_comm_op_dist_attr_for_program(c_allreduce_sum_op,
                                                  dist_attr.process_mesh,
                                                  X_grad_dist_attr, ctx)
    else:
        # replicate
422 423
        matmul_op_desc = copy_op_with_new_input_output(ctx, main_block,
                                                       backward_op, **kwargs)
424 425 426 427

    # check if need gradient allreduce
    need_gradient_allreduce = False

428
    process_mesh = dist_attr.process_mesh
429 430 431 432 433
    var_dim_mapping = dist_attr.get_input_dims_mapping(X_var.name)
    mesh_shape = process_mesh.topology
    batch_size_axis = var_dim_mapping[0]
    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
        need_gradient_allreduce = True
434
        group_ranks = _get_comm_group(process_mesh.processes,
435 436 437 438 439
                                      process_mesh.topology, batch_size_axis,
                                      rank_id)
        dp_degree = len(group_ranks)
        dp_group = new_process_group(group_ranks)

J
JZ-LIANG 已提交
440
    if need_gradient_allreduce and is_parameter_related(Y_var.name, main_block):
441
        added_ops = []
442
        Y_Grad_var = main_block.var(kwargs['Y@GRAD'][0])
443 444 445 446 447 448 449 450
        allreduce_op = main_block.append_op(type='c_allreduce_sum',
                                            inputs={'X': [Y_Grad_var]},
                                            outputs={'Out': [Y_Grad_var]},
                                            attrs={
                                                'ring_id': dp_group.id,
                                                'use_calc_stream': True,
                                                OP_ROLE_KEY: OpRole.Backward
                                            })
451 452 453 454 455 456 457 458 459 460 461 462
        added_ops.append(allreduce_op)

        if ctx.gradient_scale:
            scale_op = main_block.append_op(type='scale',
                                            inputs={'X': Y_Grad_var},
                                            outputs={'Out': Y_Grad_var},
                                            attrs={
                                                'scale': 1.0 / dp_degree,
                                                OP_ROLE_KEY: OpRole.Backward
                                            })
            added_ops.append(scale_op)

463 464
        main_block._sync_with_cpp()

465 466 467
        dims_mapping = ctx.get_tensor_dist_attr_for_program(
            Y_Grad_var).dims_mapping
        process_mesh = dist_attr.process_mesh
468
        for op in added_ops:
469 470
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = process_mesh
471 472
            op_attr.set_output_dims_mapping(Y_Grad_var.name, dims_mapping)
            op_attr.set_input_dims_mapping(Y_Grad_var.name, dims_mapping)
473
            ctx.set_op_dist_attr_for_program(op, op_attr)
474 475


476
def _init_param_sync(Weight_var, dist_op_context, startup_block, ctx, rank_id):
477

478 479
    if Weight_var.name in dist_op_context.already_init_sync_vars:
        return
480
    assert startup_block.has_var(Weight_var.name)
481
    dist_op_context.already_init_sync_vars.add(Weight_var.name)
482
    param = startup_block.var(Weight_var.name)
483 484 485
    param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
    process_mesh = param_dist_attr.process_mesh
    dim_mapping = param_dist_attr.dims_mapping
486 487 488 489 490

    for axis, size in enumerate(process_mesh.topology):
        if size <= 1 or axis in dim_mapping:
            pass
        else:
491
            group_ranks = _get_comm_group(process_mesh.processes,
492 493 494
                                          process_mesh.topology, axis, rank_id)
            sync_group = new_process_group(group_ranks)

495 496 497 498 499 500 501 502 503
            startup_block.append_op(type='c_broadcast',
                                    inputs={'X': param},
                                    outputs={'Out': param},
                                    attrs={
                                        'ring_id': sync_group.id,
                                        'root': 0,
                                        'use_calc_stream': True,
                                        OP_ROLE_KEY: OpRole.Forward
                                    })
504 505


506
class DistributedMatmul(DistributedOperatorImplContainer):
507

508 509
    def __init__(self, op_type):
        super(DistributedMatmul, self).__init__(op_type)
510 511


512
register_distributed_operator_impl_container(DistributedMatmul("matmul"))
513 514 515 516


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
517

518
    def __init__(self, name):
519
        super(DistributedMatmulImpl0, self).__init__(name)
520
        self._forward_implemented = True
521
        self._backward_implemented = True
522

C
caozhou 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        # col parallel: matmul + allreduce
        assert Y_var_dim_mapping[0] < 0
        parallel_axis = Y_var_dim_mapping[1]

        has_x_grad = len(backward_op.output("X@GRAD")) > 0
        if has_x_grad:
            assert len(backward_op.output("X@GRAD")) == 1

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # calc comm op cost
        if has_x_grad:
            attrs = {"use_calc_stream": True, "use_model_parallel": True}
            var_names = backward_op.output("X@GRAD")
            c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
                "c_allreduce_sum",
                dist_op,
                ctx,
                var_names,
                attrs=attrs,
                parallel_axis=parallel_axis)
            comm_op_cost_list = build_comm_costs_from_descs(
                AllreduceSumOpCost, ctx, processes,
                c_allreduce_sum_desc_mapping, cluster)
            res.append(comm_op_cost_list)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-1]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.input("X")
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res_cost = [comm_op_cost_list, cost_mapping]

        return res_cost

619 620 621
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
622 623 624 625 626 627
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
628 629
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
630 631 632 633 634 635
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

636 637 638
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
639 640 641 642 643 644 645 646 647
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

648
    def is_auto_compatible(self, dist_op):
649 650
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
651
            return False
652
        if not _is_auto_compatible_for_matmul(dist_op):
653 654 655
            return False
        return True

656
    def update_dims_mapping(self, dist_op):
657
        changed = False
658
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
659 660 661 662
        if dim_changed:
            changed = True
        return changed

663 664 665 666 667 668
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

669
        dist_op_context = ctx.dist_op_context
670 671 672 673
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
674
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
675 676 677 678
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
679 680
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
681 682
                                              rank_id)

683
        # check validation of inputs / outputs
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
704
            Weight_var.name)[-1]
705 706
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
707 708
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
709 710 711 712 713 714

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

730 731 732 733 734 735 736 737
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
738 739 740
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
741 742 743 744 745 746 747 748 749 750 751 752 753

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
754
                OP_ROLE_KEY: src_op.attr('op_role')
755
            })
Z
zhaoyingli 已提交
756 757
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
758 759 760 761 762 763 764 765 766

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
767
            OP_ROLE_KEY: src_op('op_role')
768 769
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
770 771 772 773
        matmul_op = main_block.append_op(type='matmul',
                                         inputs=inputs,
                                         outputs={'Out': Out_var},
                                         attrs=attrs)
Z
zhaoyingli 已提交
774 775 776 777 778 779 780
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
781
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
800
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        for input_varname in matmul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        tensor_dist_attr)
        # output
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)
826 827

        # init param sync
828
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
829
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
830 831 832 833 834
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
835

836 837 838

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
839

840
    def __init__(self, name):
841
        super(DistributedMatmulImpl1, self).__init__(name)
842
        self._forward_implemented = True
843
        self._backward_implemented = True
844

C
caozhou 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        assert Y_var_dim_mapping[1] < 0
        parallel_axis = Y_var_dim_mapping[0]

        # calc comm op cost
        var_names = [backward_op.input("Out@GRAD")[0]]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-2]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

938 939 940
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
941 942 943 944 945 946
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
947 948
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
949 950 951 952 953 954 955
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

956 957 958
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
959 960 961 962 963 964 965 966 967 968
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

969
    def is_auto_compatible(self, dist_op):
970 971
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
972
            return False
973

974
        if not _is_auto_compatible_for_matmul(dist_op):
975 976 977 978
            return False

        return True

979
    def update_dims_mapping(self, dist_op):
980
        changed = False
981
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
982 983 984 985
        if dim_changed:
            changed = True
        return changed

986 987 988 989 990 991
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

992
        dist_op_context = ctx.dist_op_context
993 994 995 996
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
997
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
998 999 1000 1001
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1002 1003
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1004 1005
                                              rank_id)

1006
        # check validation of inputs / outputs
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
1027
            Weight_var.name)[-2]
1028 1029
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1030 1031
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
1046
            OP_ROLE_KEY: src_op.attr('op_role')
1047 1048
        }
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1058
        intermediate_var_0 = main_block.create_var(
1059 1060
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
1061 1062 1063 1064 1065 1066 1067
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1068 1069 1070
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1071

1072 1073 1074 1075
        matmul_op = main_block.append_op(type='matmul',
                                         inputs=inputs,
                                         outputs={'Out': intermediate_var_0},
                                         attrs=attrs)
Z
zhaoyingli 已提交
1076 1077
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1078 1079 1080 1081 1082 1083 1084 1085

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
1086 1087
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
1088
            })
Z
zhaoyingli 已提交
1089 1090 1091 1092 1093 1094 1095
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1096
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                    input_dist_attr)
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1115
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1131 1132

        # init param sync
1133
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1134
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1135 1136 1137 1138 1139
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1140

1141

1142
# ReplicateParallel
1143
class DistributedMatmulImpl2(DistributedOperatorImpl):
1144

1145
    def __init__(self, name):
1146
        super(DistributedMatmulImpl2, self).__init__(name)
1147

C
caozhou 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        res_cost = [cost_mapping]
        return res_cost

1201 1202 1203
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1204 1205 1206 1207 1208 1209 1210
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
1211 1212
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
1213 1214 1215 1216
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
1217 1218
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
1219 1220 1221 1222
            return False

        return True

1223 1224 1225
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1226 1227 1228 1229 1230
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
1231 1232
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
1233 1234 1235 1236
            return False

        return True

1237
    def is_auto_compatible(self, dist_op):
1238 1239
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1240 1241
            return False

1242
        if not _is_auto_compatible_for_matmul(dist_op):
1243 1244 1245 1246
            return False

        return True

1247
    def update_dims_mapping(self, dist_op):
1248
        changed = False
1249
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1250 1251 1252 1253
        if dim_changed:
            changed = True
        return changed

1254 1255 1256 1257
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

1258 1259 1260 1261
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1262 1263 1264 1265 1266 1267 1268 1269 1270

register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


1271
class DistributedMatmulV2(DistributedOperatorImplContainer):
1272

1273 1274
    def __init__(self, op_type):
        super(DistributedMatmulV2, self).__init__(op_type)
1275 1276


1277
register_distributed_operator_impl_container(DistributedMatmulV2("matmul_v2"))
1278 1279


1280 1281
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
1282

1283
    def __init__(self, name):
1284
        super(DistributedMatmulV2Impl0, self).__init__(name)
1285
        self._forward_implemented = True
1286
        self._backward_implemented = True
1287

1288 1289 1290
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1291 1292 1293 1294 1295 1296
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
1297 1298
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
1299 1300 1301 1302 1303 1304
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1305 1306 1307
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1308 1309 1310 1311 1312 1313 1314 1315 1316
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1317
    def is_auto_compatible(self, dist_op):
1318 1319
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1320 1321
            return False

1322
        if not _is_auto_compatible_for_matmul(dist_op):
1323 1324 1325 1326
            return False

        return True

1327
    def update_dims_mapping(self, dist_op):
1328
        changed = False
1329
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1330 1331 1332 1333
        if dim_changed:
            changed = True
        return changed

1334 1335 1336 1337 1338 1339
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1340
        dist_op_context = ctx.dist_op_context
1341 1342 1343 1344
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
1345
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1346 1347 1348 1349
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1350 1351
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1352 1353
                                              rank_id)

1354
        # check validation of inputs / outputs
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
1370
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
1371 1372 1373 1374
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
1375
            Weight_var.name)[-1]
1376 1377
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
1378 1379
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1380 1381 1382 1383 1384 1385

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

1401 1402 1403 1404 1405 1406 1407 1408
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
1409 1410 1411
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
1424
                OP_ROLE_KEY: src_op.attr('op_role'),
1425
            })
Z
zhaoyingli 已提交
1426 1427
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
1428 1429 1430 1431 1432

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
1433 1434 1435 1436 1437
        attrs = {
            'trans_x': False,
            'trans_y': False,
            OP_ROLE_KEY: src_op.attr('op_role')
        }
1438
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
1439 1440 1441 1442
        matmul_v2_op = main_block.append_op(type='matmul_v2',
                                            inputs=inputs,
                                            outputs={'Out': Out_var},
                                            attrs=attrs)
Z
zhaoyingli 已提交
1443 1444 1445 1446 1447 1448 1449
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1450
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1468
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1469 1470 1471 1472 1473 1474 1475
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
1476 1477
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, input_dist_attr)
Z
zhaoyingli 已提交
1478 1479 1480 1481
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
1482 1483
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, tensor_dist_attr)
Z
zhaoyingli 已提交
1484 1485 1486 1487 1488 1489 1490
        for output_varname in matmul_v2_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)
1491 1492

        # init param sync
1493
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1494
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1495 1496 1497 1498 1499
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1500 1501 1502 1503


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
1504

1505
    def __init__(self, name):
1506
        super(DistributedMatmulV2Impl1, self).__init__(name)
1507
        self._forward_implemented = True
1508
        self._backward_implemented = True
1509

1510 1511 1512
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1513 1514 1515 1516 1517 1518
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
1519 1520
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
1521 1522 1523 1524 1525 1526 1527
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1528 1529 1530
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1541
    def is_auto_compatible(self, dist_op):
1542 1543
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1544 1545
            return False

1546
        if not _is_auto_compatible_for_matmul(dist_op):
1547 1548 1549 1550
            return False

        return True

1551
    def update_dims_mapping(self, dist_op):
1552
        changed = False
1553
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1554 1555 1556 1557
        if dim_changed:
            changed = True
        return changed

1558 1559 1560 1561 1562 1563
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1564
        dist_op_context = ctx.dist_op_context
1565 1566 1567 1568
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
1569
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1570 1571 1572 1573
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1574 1575
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1576 1577
                                              rank_id)

1578
        # check validation of inputs / outputs
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
1594
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
1595 1596 1597 1598
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
1599
            Weight_var.name)[-2]
1600 1601
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1602 1603
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
1614 1615 1616 1617 1618
        attrs = {
            'trans_x': False,
            'trans_y': False,
            OP_ROLE_KEY: src_op.attr('op_role')
        }
1619
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1629
        intermediate_var_0 = main_block.create_var(
1630 1631
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
1632 1633 1634 1635 1636 1637 1638
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1639 1640 1641
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1642

1643 1644 1645 1646
        matmul_v2_op = main_block.append_op(type='matmul_v2',
                                            inputs=inputs,
                                            outputs={'Out': intermediate_var_0},
                                            attrs=attrs)
Z
zhaoyingli 已提交
1647 1648
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1649 1650 1651 1652 1653 1654 1655 1656

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
1657 1658
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
1659
            })
Z
zhaoyingli 已提交
1660 1661 1662 1663 1664 1665 1666
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1667
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = matmul_v2_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1686
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1702 1703

        # init param sync
1704
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1705
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1706 1707 1708 1709 1710
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1711 1712


1713
# ReplicateParallel
1714
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
1715

1716
    def __init__(self, name):
1717
        super(DistributedMatmulV2Impl2, self).__init__(name)
1718

1719 1720 1721
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1722 1723 1724 1725 1726 1727 1728
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
1729 1730
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
1731 1732 1733 1734
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
1735 1736
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
1737 1738 1739
            return False
        return True

1740 1741 1742 1743 1744
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1745 1746 1747 1748 1749
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
1750 1751
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
1752 1753 1754 1755
            return False

        return True

1756
    def is_auto_compatible(self, dist_op):
1757 1758
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1759 1760
            return False

1761
        if not _is_auto_compatible_for_matmul(dist_op):
1762 1763 1764 1765
            return False

        return True

1766
    def update_dims_mapping(self, dist_op):
1767
        changed = False
1768
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1769 1770 1771 1772
        if dim_changed:
            changed = True
        return changed

1773 1774 1775 1776
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

1777 1778 1779 1780
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1781

1782 1783 1784 1785
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
1786
register_distributed_operator_impl(
1787
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))
1788 1789 1790


class DistributedMul(DistributedOperatorImplContainer):
1791

1792 1793 1794 1795 1796 1797 1798 1799 1800
    def __init__(self, op_type):
        super(DistributedMul, self).__init__(op_type)


register_distributed_operator_impl_container(DistributedMul("mul"))


# ColumnParallel
class DistributedMulImpl0(DistributedOperatorImpl):
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
    def __init__(self, name):
        super(DistributedMulImpl0, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
1816 1817
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
                                              rank_id)

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[-1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
1943
                OP_ROLE_KEY: src_op.attr('op_role')
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
            })
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        # attrs = {'trans_x': False, 'trans_y': False}
        attrs = {
            "x_num_col_dims": src_op.desc.attr("x_num_col_dims"),
1955 1956
            "y_num_col_dims": src_op.desc.attr("y_num_col_dims"),
            OP_ROLE_KEY: src_op.attr('op_role')
1957 1958
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
1959 1960 1961 1962
        mul_op = main_block.append_op(type='mul',
                                      inputs=inputs,
                                      outputs={'Out': Out_var},
                                      attrs=attrs)
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in mul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
1996 1997
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, input_dist_attr)
1998 1999 2000 2001
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
2002 2003
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, tensor_dist_attr)
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
        for output_varname in mul_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(mul_op, matmulv2_op_dist_attr)

        # init param sync
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


# RowParallel
class DistributedMulImpl1(DistributedOperatorImpl):
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
    def __init__(self, name):
        super(DistributedMulImpl1, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
2039 2040
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
                                              rank_id)

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[-2]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        # attrs = {'trans_x': False, 'trans_y': False}
        attrs = {
            "x_num_col_dims": src_op.desc.attr("x_num_col_dims"),
2137 2138
            "y_num_col_dims": src_op.desc.attr("y_num_col_dims"),
            OP_ROLE_KEY: src_op.attr('op_role')
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
        }
        inputs = {'X': X_var, 'Y': Weight_var}

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

        intermediate_var_0 = main_block.create_var(
2151 2152
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)

2164 2165 2166 2167
        mul_op = main_block.append_op(type='mul',
                                      inputs=inputs,
                                      outputs={'Out': intermediate_var_0},
                                      attrs=attrs)
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
2178 2179
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
            })
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in mul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = mul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(mul_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)

        # init param sync
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


# ReplicateParallel
class DistributedMulImpl2(DistributedOperatorImpl):
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
    def __init__(self, name):
        super(DistributedMulImpl2, self).__init__(name)

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
2250 2251
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
2252 2253 2254
            return False
        if is_dim_shard(y_dims_mapping[-1]):
            return False
2255 2256
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
            return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
2270 2271
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
            return False

        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


register_distributed_operator_impl("mul",
                                   DistributedMulImpl0("column_parallel"))
register_distributed_operator_impl("mul", DistributedMulImpl1("row_parallel"))
register_distributed_operator_impl("mul",
                                   DistributedMulImpl2("replicate_parallel"))