dist_matmul.py 73.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
Z
zhaoyingli 已提交
16
from .common import infer_shape
17
from .common import DistributedOperatorImplContainer
18
from .common import DistributedOperatorImpl
19
from .common import register_distributed_operator_impl_container
20
from .common import register_distributed_operator_impl
J
JZ-LIANG 已提交
21
from .common import set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program, is_parameter_related
22 23 24 25 26 27
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
28
from ..dist_attribute import OperatorDistributedAttribute
29 30 31 32
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
33
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
34
from ..process_group import new_process_group
35
from ..utils import _get_comm_group, _get_corresponding_rank
36 37


38 39 40 41 42 43 44 45 46 47 48 49 50 51
def copy_op_with_new_input_output(block, src_op, **kwargs):
    dist_op_desc = block.desc.append_op()
    dist_op_desc.copy_from(src_op.desc)
    for input_name in src_op.desc.input_names():
        assert input_name in kwargs
        dist_op_desc.set_input(input_name, kwargs[input_name])
    for output_name in src_op.desc.output_names():
        assert input_name in kwargs
        dist_op_desc.set_output(output_name, kwargs[output_name])

    block._sync_with_cpp()
    return dist_op_desc


52
def _update_dims_mapping_for_matmul(dist_op):
53
    changed = False
54 55
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

72
    # Deal with dim > 2 and take care of broadcasting
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
        assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

        for i in range(x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - x_dims_mapping_len)
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - y_dims_mapping_len)
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(out_dims_mapping_len - 2):
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

114
    # The following which uses negative index can be work
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

131
    # Remove unnecessary dim mapping to make sure the length of dims_mapping is same as its tensor
132 133 134 135 136 137 138 139 140 141 142 143
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


144 145 146 147
def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):

    # by now the backward function only insert the gradient allreduce for dist op itself

148 149 150 151 152
    dist_op_context = ctx.dist_op_context
    main_block = dist_op_context.get_dst_main_program().global_block()
    backward_op = dist_op_context.get_cur_src_op()
    rank_id = dist_op_context.get_rank_id()
    dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
153 154 155 156
    assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
        str(backward_op))

    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
157 158
    if rank_id not in dist_attr.process_mesh.processes:
        rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh, rank_id)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    assert 'Y' in kwargs, "input [{}] is not given".format('Y')
    assert 'X' in kwargs, "input [{}] is not given".format('X')
    assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out@GRAD')
    assert 'Y@GRAD' in kwargs, "output [{}] is not given".format('Y@GRAD')
    assert 'X@GRAD' in kwargs, "output [{}] is not given".format('X@GRAD')
    assert len(
        kwargs['Y']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Y'])
    assert len(
        kwargs['X']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['X'])
    assert len(
        kwargs['Out@GRAD']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Out'])
    assert len(
        kwargs['Y@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['Y@GRAD'])

    X_var = main_block.var(kwargs['X'][0])
183 184 185 186
    Y_var = main_block.var(kwargs['Y'][0])
    Out_grad = main_block.var(kwargs['Out@GRAD'][0])
    Y_grad = main_block.var(kwargs['Y@GRAD'][0])

J
JZ-LIANG 已提交
187 188 189
    assert not is_parameter_related(
        X_var.name, main_block
    ), "left operand(X) [{}] of dist matmul should not be parameter".format(
190 191
        X_var.name)

192 193 194 195 196 197 198 199 200 201 202 203 204
    Y_var_dim_mapping = dist_attr.get_input_dims_mapping(Y_var.name)
    process_mesh_shape = dist_attr.process_mesh.topology
    process_mesh_group = dist_attr.process_mesh.processes
    assert len(
        Y_var_dim_mapping
    ) == 2, "dist matmual only support Y operand with 2 dims now but Y({})'s dim is [{}]".format(
        Y_var.name, Y_var_dim_mapping)
    Y_var_partitioned = False
    for dim in Y_var_dim_mapping:
        if dim >= 0 and process_mesh_shape[dim] > 0:
            Y_var_partitioned = True
            break

J
JZ-LIANG 已提交
205
    if is_parameter_related(Y_var.name, main_block) and Y_var_partitioned:
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

        if Y_var_dim_mapping[0] >= 0:
            # row parallel: c_identity + matmul
            assert Y_var_dim_mapping[1] < 0
            parallel_axis = Y_var_dim_mapping[0]

            check_variable_and_dtype(
                Out_grad, 'tensor',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                '_c_identity')

            intermediate_var_0 = main_block.create_var(
                name=unique_name.generate_with_ignorable_key(".".join(
                    ["c_identity", 'tmp'])) + "@GRAD",
                dtype=Out_grad.dtype,
                shape=Out_grad.shape,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=Out_grad.stop_gradient)

            # copy X_var's dist_attr to intermediate_var_0's dist_attr
            out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
            assert out_grad_dist_attr is not None
            ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                 out_grad_dist_attr)

            group_ranks = _get_comm_group(
                process_mesh_group, process_mesh_shape, parallel_axis, rank_id)
            group = new_process_group(group_ranks)
            c_identity_op = main_block.append_op(
                type='c_identity',
                inputs={'X': [Out_grad]},
                outputs={'Out': intermediate_var_0},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True,
                    OP_ROLE_KEY: OpRole.Backward,
                })
            check_variable_and_dtype(intermediate_var_0, 'x',
                                     ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(intermediate_var_0.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
            set_comm_op_dist_attr_for_program(
                c_identity_op, dist_attr.process_mesh, out_grad_dist_attr, ctx)

            new_kwargs = copy.deepcopy(kwargs)
            new_kwargs['Out@GRAD'] = [intermediate_var_0.name]
            matmul_op_desc = copy_op_with_new_input_output(
                main_block, backward_op, **new_kwargs)
        else:
            # col parallel: matmul + allreduce
            assert Y_var_dim_mapping[0] < 0
            parallel_axis = Y_var_dim_mapping[1]
            new_kwargs = copy.deepcopy(kwargs)

            # NOTE (JZ-LIANG) should allow left operand be empty for matmul grad
            has_x_grad = len(kwargs['X@GRAD']) > 0
            if has_x_grad:
                assert len(kwargs['X@GRAD']) == 1
                X_grad = main_block.var(kwargs['X@GRAD'][0])
                intermediate_var_0 = main_block.create_var(
                    name=unique_name.generate_with_ignorable_key(".".join(
                        ["c_identity", 'tmp'])) + "@GRAD",
                    dtype=X_grad.dtype,
                    shape=X_grad.shape,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=X_grad.stop_gradient)

                X_grad_dist_attr = dist_attr.get_output_dist_attr(X_grad.name)
                assert X_grad_dist_attr is not None
                ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                     X_grad_dist_attr)
                new_kwargs['X@GRAD'] = [intermediate_var_0.name]

            matmul_op_desc = copy_op_with_new_input_output(
                main_block, backward_op, **new_kwargs)

            # NOTE (JZ-LIANG) trick to skip one allreduce if left operand has not grad
            if has_x_grad:
                group_ranks = _get_comm_group(process_mesh_group,
                                              process_mesh_shape, parallel_axis,
                                              rank_id)
                group = new_process_group(group_ranks)
                c_allreduce_sum_op = main_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': [intermediate_var_0.name]},
                    outputs={'Out': kwargs['X@GRAD']},
                    attrs={
                        'ring_id': group.id,
                        'use_calc_stream': True,
                        'use_model_parallel': True,
                        OP_ROLE_KEY: OpRole.Backward
                    })
                set_comm_op_dist_attr_for_program(c_allreduce_sum_op,
                                                  dist_attr.process_mesh,
                                                  X_grad_dist_attr, ctx)
    else:
        # replicate
        matmul_op_desc = copy_op_with_new_input_output(main_block, backward_op,
                                                       **kwargs)

    main_block._sync_with_cpp()

    # check if need gradient allreduce
    need_gradient_allreduce = False

315
    process_mesh = dist_attr.process_mesh
316 317 318 319 320
    var_dim_mapping = dist_attr.get_input_dims_mapping(X_var.name)
    mesh_shape = process_mesh.topology
    batch_size_axis = var_dim_mapping[0]
    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
        need_gradient_allreduce = True
321
        group_ranks = _get_comm_group(process_mesh.processes,
322 323 324 325 326
                                      process_mesh.topology, batch_size_axis,
                                      rank_id)
        dp_degree = len(group_ranks)
        dp_group = new_process_group(group_ranks)

J
JZ-LIANG 已提交
327
    if need_gradient_allreduce and is_parameter_related(Y_var.name, main_block):
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        Y_Grad_var = main_block.var(kwargs['Y@GRAD'][0])
        allreduce_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [Y_Grad_var]},
            outputs={'Out': [Y_Grad_var]},
            attrs={
                'ring_id': dp_group.id,
                'use_calc_stream': True,
                OP_ROLE_KEY: OpRole.Backward
            })
        scale_op = main_block.append_op(
            type='scale',
            inputs={'X': Y_Grad_var},
            outputs={'Out': Y_Grad_var},
            attrs={'scale': 1.0 / dp_degree,
                   OP_ROLE_KEY: OpRole.Backward})
        main_block._sync_with_cpp()

346 347 348
        dims_mapping = ctx.get_tensor_dist_attr_for_program(
            Y_Grad_var).dims_mapping
        process_mesh = dist_attr.process_mesh
349
        for op in [allreduce_op, scale_op]:
350 351
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = process_mesh
352 353
            op_attr.set_output_dims_mapping(Y_Grad_var.name, dims_mapping)
            op_attr.set_input_dims_mapping(Y_Grad_var.name, dims_mapping)
354
            ctx.set_op_dist_attr_for_program(op, op_attr)
355 356


357
def _init_param_sync(Weight_var, dist_op_context, startup_block, ctx, rank_id):
358

359
    assert Weight_var.name not in dist_op_context.already_init_sync_vars
360
    assert startup_block.has_var(Weight_var.name)
361
    dist_op_context.already_init_sync_vars.add(Weight_var.name)
362
    param = startup_block.var(Weight_var.name)
363 364 365
    param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
    process_mesh = param_dist_attr.process_mesh
    dim_mapping = param_dist_attr.dims_mapping
366 367 368 369 370

    for axis, size in enumerate(process_mesh.topology):
        if size <= 1 or axis in dim_mapping:
            pass
        else:
371
            group_ranks = _get_comm_group(process_mesh.processes,
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
                                          process_mesh.topology, axis, rank_id)
            sync_group = new_process_group(group_ranks)

            startup_block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': sync_group.id,
                    'root': 0,
                    'use_calc_stream': True,
                    OP_ROLE_KEY: OpRole.Forward
                })
    startup_block._sync_with_cpp()


388
class DistributedMatmul(DistributedOperatorImplContainer):
389 390 391 392 393
    def __init__(self, name):
        super(DistributedMatmul, self).__init__()
        self._name = name


394 395
register_distributed_operator_impl_container("matmul",
                                             DistributedMatmul("matmul"))
396 397 398 399 400 401 402


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl0, self).__init__()
        self._name = name
403
        self._forward_implemented = True
404
        self._backward_implemented = True
405

406 407 408
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
409 410 411 412 413 414 415 416 417 418 419 420 421 422
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

423 424 425
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
426 427 428 429 430 431 432 433 434
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

435 436 437 438 439 440 441 442 443 444 445 446
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        assert len(x_dims_mapping) >= len(
            y_dims_mapping), "now just support x dims > y dims"
447 448
        if len(y_dims_mapping) != 2:
            return False
J
JZ-LIANG 已提交
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]
        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_replicate(out_dims_mapping[-1]):
            return False

        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        input_dims_mapping = []
        ordered_input_shard_dims_mapping = []

        for dim in (x_dims_mapping + y_dims_mapping):
            input_dims_mapping.append(dim)

        for item in input_dims_mapping:
            if item not in ordered_input_shard_dims_mapping and item != -1:
                ordered_input_shard_dims_mapping.append(item)

        for mapping in out_dims_mapping:
            if mapping not in input_dims_mapping:
                return False

        if is_dim_shard(x_dims_mapping[0]):
            order_index = 0
            for idx, item in enumerate(out_dims_mapping):
                if item != -1:
                    if item != ordered_input_shard_dims_mapping[order_index]:
                        return False
                    else:
                        order_index += 1
            if order_index != len(ordered_input_shard_dims_mapping):
                return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        if is_dim_shard(x_dims_mapping[0]):
            for mapping in y_dims_mapping[1:]:
                if is_dim_shard(mapping) and mapping == x_dims_mapping[0]:
                    return False

        return True

515
    def update_dims_mapping(self, dist_op):
516
        changed = False
517
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
518 519 520 521
        if dim_changed:
            changed = True
        return changed

522 523 524 525 526 527
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

528 529 530 531 532 533
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
534 535 536 537
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
538 539
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
540 541
                                              rank_id)

542
        # check validation of inputs / outputs
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
566 567
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
568 569 570 571 572 573

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

589 590 591 592 593 594 595 596
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
597 598 599
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
600 601 602 603 604 605 606 607 608 609 610 611 612 613

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
614 615
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
616 617 618 619 620 621 622 623 624 625 626 627 628

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
        matmul_op = main_block.append_op(
            type='matmul', inputs=inputs, outputs={'Out': Out_var}, attrs=attrs)
Z
zhaoyingli 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        for input_varname in matmul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        tensor_dist_attr)
        # output
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)
679 680 681

        # init param sync
        if Weight_var.is_parameter:
682
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
683 684 685 686 687
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
688

689 690 691 692 693 694

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl1, self).__init__()
        self._name = name
695
        self._forward_implemented = True
696
        self._backward_implemented = True
697

698 699 700
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

716 717 718
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
719 720 721 722 723 724 725 726 727 728
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if op_desc.attr('transpose_X') or op_desc.attr('transpose_Y'):
            return False
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # for gpt2, x dims > y dims, this is a temporary solution
        assert len(x_dims_mapping) >= len(
            y_dims_mapping), "now just support x dims > y dims"
744 745
        if len(y_dims_mapping) != 2:
            return False
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]
        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        if is_dim_replicate(x_dims_mapping[-1]):
            return False

        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False

        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        x_shard_dim_count = 0
        x_shard_dims = []
        y_shard_dim_count = 0
        y_shard_dims = []
        for dim in x_dims_mapping:
            if is_dim_shard(dim):
                x_shard_dim_count += 1
                x_shard_dims.append(dim)

        for dim in y_dims_mapping:
            if is_dim_shard(dim):
                y_shard_dim_count += 1
                y_shard_dims.append(dim)

        if not x_shard_dims and not y_shard_dims:
            return False

        if x_shard_dims[-1] != y_shard_dims[0]:
            return False

        if x_shard_dim_count == y_shard_dim_count:
            for dim in out_dims_mapping:
                if is_dim_shard(dim):
                    return False
            if x_shard_dims != y_shard_dims:
                return False
        else:
            if x_shard_dim_count < y_shard_dim_count:
                return False
            output_shard_dims = []
            for dim in out_dims_mapping:
                if is_dim_shard(dim):
                    output_shard_dims.append(dim)
            if not output_shard_dims or output_shard_dims[0] != x_shard_dims[0]:
                return False

        return True

820
    def update_dims_mapping(self, dist_op):
821
        changed = False
822
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
823 824 825 826
        if dim_changed:
            changed = True
        return changed

827 828 829 830 831 832
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

833 834 835 836 837 838
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
839 840 841 842
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
843 844
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
845 846
                                              rank_id)

847
        # check validation of inputs / outputs
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
871 872
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
889 890 891 892 893 894 895 896 897

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

898 899 900 901 902 903 904 905
        intermediate_var_0 = main_block.create_var(
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
906 907 908
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
909 910 911 912 913 914

        matmul_op = main_block.append_op(
            type='matmul',
            inputs=inputs,
            outputs={'Out': intermediate_var_0},
            attrs=attrs)
Z
zhaoyingli 已提交
915 916
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
917 918 919 920 921 922 923 924 925 926

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
Z
zhaoyingli 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                    input_dist_attr)
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
967 968 969

        # init param sync
        if Weight_var.is_parameter:
970
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
971 972 973 974 975
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
976

977

978
# ReplicateParallel
979 980 981 982 983
class DistributedMatmulImpl2(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl2, self).__init__()
        self._name = name

984 985 986
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

1006 1007 1008
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        assert len(x_dims_mapping) >= len(
            y_dims_mapping
        ), "now just support x dims > y dims,but x:{0} and y:{1}".format(
            x_dims_mapping, y_dims_mapping)
1033 1034
        if len(y_dims_mapping) != 2:
            return False
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]
        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False

        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

1075
    def update_dims_mapping(self, dist_op):
1076
        changed = False
1077
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1078 1079 1080 1081
        if dim_changed:
            changed = True
        return changed

1082 1083 1084 1085
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1086 1087 1088 1089 1090 1091 1092 1093 1094

register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


1095
class DistributedMatmulV2(DistributedOperatorImplContainer):
1096 1097 1098 1099 1100
    def __init__(self, name):
        super(DistributedMatmulV2, self).__init__()
        self._name = name


1101 1102
register_distributed_operator_impl_container("matmul_v2",
                                             DistributedMatmulV2("matmul_v2"))
1103 1104


1105 1106 1107 1108 1109 1110
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulV2Impl0, self).__init__()
        self._name = name
        self._forward_implemented = True
1111
        self._backward_implemented = True
1112

1113 1114 1115
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1130 1131 1132
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1133 1134 1135 1136 1137 1138 1139 1140 1141
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if op_desc.attr('trans_x') or op_desc.attr('trans_y'):
            return False
        assert len(x_dims_mapping) >= len(
            y_dims_mapping), "now just support x dims > y dims"
1156 1157
        if len(y_dims_mapping) != 2:
            return False
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]
        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_replicate(out_dims_mapping[-1]):
            return False

        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        input_dims_mapping = []
        ordered_input_shard_dims_mapping = []

        for dim in (x_dims_mapping + y_dims_mapping):
            input_dims_mapping.append(dim)

        for item in input_dims_mapping:
            if item not in ordered_input_shard_dims_mapping and item != -1:
                ordered_input_shard_dims_mapping.append(item)

        for mapping in out_dims_mapping:
            if mapping not in input_dims_mapping:
                return False

        if is_dim_shard(x_dims_mapping[0]):
            order_index = 0
            for idx, item in enumerate(out_dims_mapping):
                if item != -1:
                    if item != ordered_input_shard_dims_mapping[order_index]:
                        return False
                    else:
                        order_index += 1
            if order_index != len(ordered_input_shard_dims_mapping):
                return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False

        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        if is_dim_shard(x_dims_mapping[0]):
            for mapping in y_dims_mapping[1:]:
                if is_dim_shard(mapping) and mapping == x_dims_mapping[0]:
                    return False

        return True

1224
    def update_dims_mapping(self, dist_op):
1225
        changed = False
1226
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1227 1228 1229 1230
        if dim_changed:
            changed = True
        return changed

1231 1232 1233 1234 1235 1236
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1237 1238 1239 1240 1241 1242
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1243 1244 1245 1246
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1247 1248
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1249 1250
                                              rank_id)

1251
        # check validation of inputs / outputs
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
1275 1276
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1277 1278 1279 1280 1281 1282

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

1298 1299 1300 1301 1302 1303 1304 1305
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
1306 1307 1308
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
1322 1323
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
        matmul_v2_op = main_block.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': Out_var},
            attrs=attrs)
Z
zhaoyingli 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                          input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                          tensor_dist_attr)
        for output_varname in matmul_v2_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)
1382 1383 1384

        # init param sync
        if Weight_var.is_parameter:
1385
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1386 1387 1388 1389 1390
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1391 1392 1393 1394 1395 1396 1397 1398


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulV2Impl1, self).__init__()
        self._name = name
        self._forward_implemented = True
1399
        self._backward_implemented = True
1400

1401 1402 1403
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1419 1420 1421
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if op_desc.attr('trans_x') or op_desc.attr('trans_y'):
            return False
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        assert len(x_dims_mapping) >= len(
            y_dims_mapping), "now just support x dims > y dims"
1445 1446
        if len(y_dims_mapping) != 2:
            return False
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        if is_dim_replicate(x_dims_mapping[-1]):
            return False

        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False

        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        x_shard_dim_count = 0
        x_shard_dims = []
        y_shard_dim_count = 0
        y_shard_dims = []
        for dim in x_dims_mapping:
            if is_dim_shard(dim):
                x_shard_dim_count += 1
                x_shard_dims.append(dim)

        for dim in y_dims_mapping:
            if is_dim_shard(dim):
                y_shard_dim_count += 1
                y_shard_dims.append(dim)

        if not x_shard_dims and not y_shard_dims:
            return False

        if x_shard_dims[-1] != y_shard_dims[0]:
            return False

        if x_shard_dim_count == y_shard_dim_count:
            for dim in out_dims_mapping:
                if is_dim_shard(dim):
                    return False
            if x_shard_dims != y_shard_dims:
                return False
        else:
            if x_shard_dim_count < y_shard_dim_count:
                return False
            output_shard_dims = []
            for dim in out_dims_mapping:
                if is_dim_shard(dim):
                    output_shard_dims.append(dim)
            if not output_shard_dims or output_shard_dims[0] != x_shard_dims[0]:
                return False
        return True

1522
    def update_dims_mapping(self, dist_op):
1523
        changed = False
1524
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1525 1526 1527 1528
        if dim_changed:
            changed = True
        return changed

1529 1530 1531 1532 1533 1534
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1535 1536 1537 1538 1539 1540
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1541 1542 1543 1544
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1545 1546
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1547 1548
                                              rank_id)

1549
        # check validation of inputs / outputs
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1573 1574
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1596 1597 1598 1599 1600 1601 1602 1603
        intermediate_var_0 = main_block.create_var(
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1604 1605 1606
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1607 1608 1609 1610 1611 1612

        matmul_v2_op = main_block.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': intermediate_var_0},
            attrs=attrs)
Z
zhaoyingli 已提交
1613 1614
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
Z
zhaoyingli 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = matmul_v2_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1665 1666 1667

        # init param sync
        if Weight_var.is_parameter:
1668
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1669 1670 1671 1672 1673
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1674 1675


1676
# ReplicateParallel
1677
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
1678
    def __init__(self, name):
1679
        super(DistributedMatmulV2Impl2, self).__init__()
1680 1681
        self._name = name

1682 1683 1684
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

1704 1705 1706 1707 1708
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        assert len(x_dims_mapping) >= len(
            y_dims_mapping
        ), "now just support x dims > y dims,but x:{0} and y:{1}".format(
            x_dims_mapping, y_dims_mapping)
1733 1734
        if len(y_dims_mapping) != 2:
            return False
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False

        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

1776
    def update_dims_mapping(self, dist_op):
1777
        changed = False
1778
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1779 1780 1781 1782
        if dim_changed:
            changed = True
        return changed

1783 1784 1785 1786
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1787

1788 1789 1790 1791
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
1792
register_distributed_operator_impl(
1793
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))