test_downpoursgd.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Test cases for Downpour."""
15 16 17 18 19 20

import paddle
import paddle.fluid as fluid
import os
import unittest
import sys
21
from paddle.fluid.incubate.fleet.parameter_server.pslib.node import DownpourWorker, DownpourServer
22 23
from google.protobuf import text_format
import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib
24
from paddle.fluid.trainer_factory import TrainerFactory
25

26 27
cache_path = os.path.expanduser('~/.cache/paddle/dataset')

28

29
class TestListenAndServOp(unittest.TestCase):
30
    """This class is Test Listen And ServOp."""
31

32
    def setUp(self):
33 34 35
        """This function is set Up."""
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
36 37

    def test_device_work_use_cvm(self):
38
        """test device work use_cvm."""
39 40 41 42
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
43 44 45 46 47
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
48
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
49 50 51
            x_emb = fluid.layers.embedding(input=x,
                                           size=[1, 2],
                                           is_distributed=True)
52 53 54
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
55
            avg_cost = paddle.mean(cost)
56 57

            ps_param = pslib.PSParameter()
58
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = True
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
85
            opt_info["stat_var_names"] = []
86
            worker = DownpourWorker(None)
87 88
            server = DownpourServer()
            server.add_sparse_table(0, {})
89 90
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}
91 92

            main_program._fleet_opt = opt_info
93
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
94 95 96 97
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

    def test_device_work(self):
98
        """This function is test devicve worker."""
99 100 101 102
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
103 104 105 106 107
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
108
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
109 110 111
            x_emb = fluid.layers.embedding(input=x,
                                           size=[1, 2],
                                           is_distributed=True)
112 113 114
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
115
            avg_cost = paddle.mean(cost)
116 117

            ps_param = pslib.PSParameter()
118
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
145
            opt_info["stat_var_names"] = []
146 147 148
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}
149 150

            main_program._fleet_opt = opt_info
151
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
152 153 154
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

155
    def test_downpour_opt_work(self):
156
        """This function is test devicve worker."""
157 158 159 160
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
161 162 163 164 165
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
166
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
167 168 169
            x_emb = fluid.layers.embedding(input=x,
                                           size=[1, 2],
                                           is_distributed=True)
170 171 172
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
173
            avg_cost = paddle.mean(cost)
174 175

            ps_param = pslib.PSParameter()
176
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGDOPT"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
            opt_info["stat_var_names"] = []
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}

            main_program._fleet_opt = opt_info
209
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
210 211 212
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

213 214 215

if __name__ == "__main__":
    unittest.main()