test_downpoursgd.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Test cases for Downpour."""
15 16 17 18 19 20 21 22 23 24 25 26 27

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import os
import signal
import subprocess
import time
import unittest
import sys
from op_test import OpTest
from paddle.fluid.trainer_desc import DistMultiTrainer
28
from paddle.fluid.device_worker import DownpourSGD, DownpourSGDOPT
29
from paddle.fluid.incubate.fleet.parameter_server.pslib.node import DownpourWorker
30 31
from google.protobuf import text_format
import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib
32
from paddle.fluid.trainer_factory import TrainerFactory
33

34 35
cache_path = os.path.expanduser('~/.cache/paddle/dataset')

36

37
class TestListenAndServOp(unittest.TestCase):
38
    """This class is Test Listen And ServOp."""
39

40
    def setUp(self):
41 42 43
        """This function is set Up."""
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
44 45

    def test_device_work_use_cvm(self):
46
        """test device work use_cvm."""
47 48 49 50
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
51 52 53 54 55
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
56
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
57 58 59 60 61 62 63 64
            x_emb = fluid.layers.embedding(
                input=x, size=[1, 2], is_distributed=True)
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            ps_param = pslib.PSParameter()
65
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = True
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
92
            opt_info["stat_var_names"] = []
93 94 95
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}
96 97

            main_program._fleet_opt = opt_info
98
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
99 100 101 102
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

    def test_device_work(self):
103
        """This function is test devicve worker."""
104 105 106 107
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
108 109 110 111 112
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
113
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
114 115 116 117 118 119 120 121
            x_emb = fluid.layers.embedding(
                input=x, size=[1, 2], is_distributed=True)
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            ps_param = pslib.PSParameter()
122
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
149
            opt_info["stat_var_names"] = []
150 151 152
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}
153 154

            main_program._fleet_opt = opt_info
155
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
156 157 158
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

159
    def test_downpour_opt_work(self):
160
        """This function is test devicve worker."""
161 162 163 164
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
165 166 167 168 169
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
170 171 172 173 174 175 176 177 178
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
            x_emb = fluid.layers.embedding(
                input=x, size=[1, 2], is_distributed=True)
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            ps_param = pslib.PSParameter()
179
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGDOPT"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
            opt_info["stat_var_names"] = []
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}

            main_program._fleet_opt = opt_info
212
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
213 214 215
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

216 217 218

if __name__ == "__main__":
    unittest.main()