test_beam_search_op.py 15.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.fluid.op import Operator
16
import paddle.fluid.core as core
Y
Yan Chunwei 已提交
17 18
import unittest
import numpy as np
19 20
import paddle.fluid as fluid
from paddle.fluid.framework import Program, program_guard
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29


def create_tensor(scope, name, np_data):
    tensor = scope.var(name).get_tensor()
    tensor.set(np_data, core.CPUPlace())
    return tensor


class BeamSearchOpTester(unittest.TestCase):
30 31
    """unittest of beam_search_op"""

Y
Yan Chunwei 已提交
32 33 34
    def setUp(self):
        self.scope = core.Scope()
        self._create_ids()
35
        self._create_pre_scores()
Y
Yan Chunwei 已提交
36 37
        self._create_scores()
        self._create_pre_ids()
P
pangyoki 已提交
38
        self.set_outputs()
39 40 41
        self.scope.var('selected_ids').get_tensor()
        self.scope.var('selected_scores').get_tensor()
        self.scope.var('parent_idx').get_tensor()
Y
Yan Chunwei 已提交
42 43

    def test_run(self):
44 45 46 47 48 49 50 51 52 53 54 55
        op = Operator('beam_search',
                      pre_ids='pre_ids',
                      pre_scores='pre_scores',
                      ids='ids',
                      scores='scores',
                      selected_ids='selected_ids',
                      selected_scores='selected_scores',
                      parent_idx='parent_idx',
                      level=0,
                      beam_size=self.beam_size,
                      end_id=0,
                      is_accumulated=self.is_accumulated)
D
dzhwinter 已提交
56
        op.run(self.scope, core.CPUPlace())
Y
Yan Chunwei 已提交
57
        selected_ids = self.scope.find_var("selected_ids").get_tensor()
58
        selected_scores = self.scope.find_var("selected_scores").get_tensor()
59
        parent_idx = self.scope.find_var("parent_idx").get_tensor()
60 61 62 63 64 65
        np.testing.assert_allclose(np.array(selected_ids),
                                   self.output_ids,
                                   rtol=1e-05)
        np.testing.assert_allclose(np.array(selected_scores),
                                   self.output_scores,
                                   rtol=1e-05)
P
pangyoki 已提交
66
        self.assertEqual(selected_ids.lod(), self.output_lod)
67 68 69
        np.testing.assert_allclose(np.array(parent_idx),
                                   self.output_parent_idx,
                                   rtol=1e-05)
Y
Yan Chunwei 已提交
70 71

    def _create_pre_ids(self):
72
        np_data = np.array([[1, 2, 3, 4]], dtype='int64')
73 74 75 76 77
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)
Y
Yan Chunwei 已提交
78 79

    def _create_ids(self):
80
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
81 82
        np_data = np.array([[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]],
                           dtype='int64')
Y
Yan Chunwei 已提交
83 84 85 86
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
87 88 89 90 91 92 93
        np_data = np.array([
            [0.5, 0.3, 0.2],
            [0.6, 0.3, 0.1],
            [0.9, 0.5, 0.1],
            [0.7, 0.5, 0.1],
        ],
                           dtype='float32')
Y
Yan Chunwei 已提交
94 95 96
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

P
pangyoki 已提交
97 98 99 100 101 102 103 104 105 106
    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([4, 2, 3, 8])[:, np.newaxis]
        self.output_scores = np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 1, 2, 3])


class BeamSearchOpTester2(BeamSearchOpTester):
107

P
pangyoki 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
123 124 125 126 127 128 129
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([2, 4, 3, 1])[:, np.newaxis]
        self.output_scores = np.array([0.9, 0.6, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 2, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 0, 2, 3])


class BeamSearchOpTester3(BeamSearchOpTester):
    # pre_id = end_id
    def _create_pre_ids(self):
        np_data = np.array([[1], [0], [0], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1], [1.2], [0.5], [0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
159 160 161 162 163 164 165
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.6, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([2, 0, 1, 8])[:, np.newaxis]
        self.output_scores = np.array([0.9, 1.2, 0.7, 0.6])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 1, 2, 2, 4]]
        self.output_parent_idx = np.array([0, 1, 3, 3])


class BeamSearchOpTester4(BeamSearchOpTester):
    # prune beam search while pre_id of in all beams is end_id
    def _create_pre_ids(self):
        np_data = np.array([[0], [0], [0], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1], [1.2], [0.5], [0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
195 196 197 198 199 200 201
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.6, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([1, 8])[:, np.newaxis]
        self.output_scores = np.array([0.7, 0.6])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 0, 0, 0, 2]]
        self.output_parent_idx = np.array([3, 3])


class BeamSearchOpTester5(BeamSearchOpTester):
    # is_accumulated = False
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 2.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
231 232 233 234 235 236 237
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
238 239 240 241 242 243 244
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = False
        self.output_ids = np.array([7, 3, 3, 1])[:, np.newaxis]
245 246
        self.output_scores = np.array([1.50685, 0.996027, 0.194639,
                                       0.043325])[:, np.newaxis]
P
pangyoki 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        self.output_lod = [[0, 2, 4], [0, 0, 2, 3, 4]]
        self.output_parent_idx = np.array([1, 1, 2, 3])


class BeamSearchOpTester6(BeamSearchOpTester):
    # beam_size = 1
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
268 269 270 271 272 273 274
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
275 276 277 278 279 280 281 282 283 284 285
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 1
        self.is_accumulated = True
        self.output_ids = np.array([2, 7, 3, 1])[:, np.newaxis]
        self.output_scores = np.array([0.9, 0.5, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 1, 2, 3])

Y
Yan Chunwei 已提交
286

287
class TestBeamSearchOpError(unittest.TestCase):
288

289 290
    def test_errors(self):
        with program_guard(Program(), Program()):
291 292 293 294 295 296 297 298
            pre_ids = fluid.data(name='pre_id',
                                 shape=[1],
                                 lod_level=2,
                                 dtype='int64')
            pre_scores = fluid.data(name='pre_scores',
                                    shape=[1],
                                    lod_level=2,
                                    dtype='float32')
299 300 301 302
            probs = fluid.data(name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=4)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
303
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
304 305 306 307 308
                axis=0)

            def test_preids_Variable():
                # the input pre_ids must be Variable
                preids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
309 310 311 312 313 314
                fluid.layers.beam_search(pre_ids=preids_data,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
315 316 317 318 319 320 321

            self.assertRaises(TypeError, test_preids_Variable)

            def test_prescores_Variable():
                # the input pre_scores must be Variable
                prescores_data = np.random.uniform(1, 5,
                                                   [5, 1]).astype("float32")
322 323 324 325 326 327
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=prescores_data,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
328 329 330 331 332 333

            self.assertRaises(TypeError, test_prescores_Variable)

            def test_ids_Variable():
                # the input ids must be Variable or None
                ids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
334 335 336 337 338 339
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=pre_scores,
                                         ids=ids_data,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
340 341 342 343 344 345

            self.assertRaises(TypeError, test_ids_Variable)

            def test_scores_Variable():
                # the input scores must be Variable
                scores_data = np.random.uniform(1, 5, [5, 1]).astype("float32")
346 347 348 349 350 351
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=scores_data,
                                         beam_size=4,
                                         end_id=1)
352 353 354 355 356

            self.assertRaises(TypeError, test_scores_Variable)

            def test_preids_dtype():
                # the dtype of input pre_ids must be int64
357 358 359 360 361 362 363 364 365 366
                preids_type_data = fluid.data(name='preids_type_data',
                                              shape=[1],
                                              lod_level=2,
                                              dtype='float32')
                fluid.layers.beam_search(pre_ids=preids_type_data,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
367 368 369 370 371

            self.assertRaises(TypeError, test_preids_dtype)

            def test_prescores_dtype():
                # the dtype of input pre_scores must be float32
372 373 374 375 376 377 378 379 380 381
                prescores_type_data = fluid.data(name='prescores_type_data',
                                                 shape=[1],
                                                 lod_level=2,
                                                 dtype='int64')
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=prescores_type_data,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
382 383 384 385

            self.assertRaises(TypeError, test_prescores_dtype)


Y
Yan Chunwei 已提交
386 387
if __name__ == '__main__':
    unittest.main()