test_beam_search_op.py 15.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yan Chunwei 已提交
15
import logging
16 17
from paddle.fluid.op import Operator, DynamicRecurrentOp
import paddle.fluid.core as core
Y
Yan Chunwei 已提交
18 19
import unittest
import numpy as np
20 21
import paddle.fluid as fluid
from paddle.fluid.framework import Program, program_guard
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30


def create_tensor(scope, name, np_data):
    tensor = scope.var(name).get_tensor()
    tensor.set(np_data, core.CPUPlace())
    return tensor


class BeamSearchOpTester(unittest.TestCase):
31 32
    """unittest of beam_search_op"""

Y
Yan Chunwei 已提交
33 34 35
    def setUp(self):
        self.scope = core.Scope()
        self._create_ids()
36
        self._create_pre_scores()
Y
Yan Chunwei 已提交
37 38
        self._create_scores()
        self._create_pre_ids()
P
pangyoki 已提交
39
        self.set_outputs()
40 41 42
        self.scope.var('selected_ids').get_tensor()
        self.scope.var('selected_scores').get_tensor()
        self.scope.var('parent_idx').get_tensor()
Y
Yan Chunwei 已提交
43 44

    def test_run(self):
45 46 47 48 49 50 51 52 53 54 55 56
        op = Operator('beam_search',
                      pre_ids='pre_ids',
                      pre_scores='pre_scores',
                      ids='ids',
                      scores='scores',
                      selected_ids='selected_ids',
                      selected_scores='selected_scores',
                      parent_idx='parent_idx',
                      level=0,
                      beam_size=self.beam_size,
                      end_id=0,
                      is_accumulated=self.is_accumulated)
D
dzhwinter 已提交
57
        op.run(self.scope, core.CPUPlace())
Y
Yan Chunwei 已提交
58
        selected_ids = self.scope.find_var("selected_ids").get_tensor()
59
        selected_scores = self.scope.find_var("selected_scores").get_tensor()
60
        parent_idx = self.scope.find_var("parent_idx").get_tensor()
61 62 63 64 65 66
        np.testing.assert_allclose(np.array(selected_ids),
                                   self.output_ids,
                                   rtol=1e-05)
        np.testing.assert_allclose(np.array(selected_scores),
                                   self.output_scores,
                                   rtol=1e-05)
P
pangyoki 已提交
67
        self.assertEqual(selected_ids.lod(), self.output_lod)
68 69 70
        np.testing.assert_allclose(np.array(parent_idx),
                                   self.output_parent_idx,
                                   rtol=1e-05)
Y
Yan Chunwei 已提交
71 72

    def _create_pre_ids(self):
73
        np_data = np.array([[1, 2, 3, 4]], dtype='int64')
74 75 76 77 78
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)
Y
Yan Chunwei 已提交
79 80

    def _create_ids(self):
81
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
82 83
        np_data = np.array([[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]],
                           dtype='int64')
Y
Yan Chunwei 已提交
84 85 86 87
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
88 89 90 91 92 93 94
        np_data = np.array([
            [0.5, 0.3, 0.2],
            [0.6, 0.3, 0.1],
            [0.9, 0.5, 0.1],
            [0.7, 0.5, 0.1],
        ],
                           dtype='float32')
Y
Yan Chunwei 已提交
95 96 97
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

P
pangyoki 已提交
98 99 100 101 102 103 104 105 106 107
    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([4, 2, 3, 8])[:, np.newaxis]
        self.output_scores = np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 1, 2, 3])


class BeamSearchOpTester2(BeamSearchOpTester):
108

P
pangyoki 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
124 125 126 127 128 129 130
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([2, 4, 3, 1])[:, np.newaxis]
        self.output_scores = np.array([0.9, 0.6, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 2, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 0, 2, 3])


class BeamSearchOpTester3(BeamSearchOpTester):
    # pre_id = end_id
    def _create_pre_ids(self):
        np_data = np.array([[1], [0], [0], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1], [1.2], [0.5], [0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
160 161 162 163 164 165 166
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.6, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([2, 0, 1, 8])[:, np.newaxis]
        self.output_scores = np.array([0.9, 1.2, 0.7, 0.6])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 1, 2, 2, 4]]
        self.output_parent_idx = np.array([0, 1, 3, 3])


class BeamSearchOpTester4(BeamSearchOpTester):
    # prune beam search while pre_id of in all beams is end_id
    def _create_pre_ids(self):
        np_data = np.array([[0], [0], [0], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1], [1.2], [0.5], [0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
196 197 198 199 200 201 202
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.6, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([1, 8])[:, np.newaxis]
        self.output_scores = np.array([0.7, 0.6])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 0, 0, 0, 2]]
        self.output_parent_idx = np.array([3, 3])


class BeamSearchOpTester5(BeamSearchOpTester):
    # is_accumulated = False
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 2.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
232 233 234 235 236 237 238
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
239 240 241 242 243 244 245
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = False
        self.output_ids = np.array([7, 3, 3, 1])[:, np.newaxis]
246 247
        self.output_scores = np.array([1.50685, 0.996027, 0.194639,
                                       0.043325])[:, np.newaxis]
P
pangyoki 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        self.output_lod = [[0, 2, 4], [0, 0, 2, 3, 4]]
        self.output_parent_idx = np.array([1, 1, 2, 3])


class BeamSearchOpTester6(BeamSearchOpTester):
    # beam_size = 1
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
269 270 271 272 273 274 275
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
276 277 278 279 280 281 282 283 284 285 286
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 1
        self.is_accumulated = True
        self.output_ids = np.array([2, 7, 3, 1])[:, np.newaxis]
        self.output_scores = np.array([0.9, 0.5, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 1, 2, 3])

Y
Yan Chunwei 已提交
287

288
class TestBeamSearchOpError(unittest.TestCase):
289

290 291
    def test_errors(self):
        with program_guard(Program(), Program()):
292 293 294 295 296 297 298 299
            pre_ids = fluid.data(name='pre_id',
                                 shape=[1],
                                 lod_level=2,
                                 dtype='int64')
            pre_scores = fluid.data(name='pre_scores',
                                    shape=[1],
                                    lod_level=2,
                                    dtype='float32')
300 301 302 303
            probs = fluid.data(name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=4)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
304
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
305 306 307 308 309
                axis=0)

            def test_preids_Variable():
                # the input pre_ids must be Variable
                preids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
310 311 312 313 314 315
                fluid.layers.beam_search(pre_ids=preids_data,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
316 317 318 319 320 321 322

            self.assertRaises(TypeError, test_preids_Variable)

            def test_prescores_Variable():
                # the input pre_scores must be Variable
                prescores_data = np.random.uniform(1, 5,
                                                   [5, 1]).astype("float32")
323 324 325 326 327 328
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=prescores_data,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
329 330 331 332 333 334

            self.assertRaises(TypeError, test_prescores_Variable)

            def test_ids_Variable():
                # the input ids must be Variable or None
                ids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
335 336 337 338 339 340
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=pre_scores,
                                         ids=ids_data,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
341 342 343 344 345 346

            self.assertRaises(TypeError, test_ids_Variable)

            def test_scores_Variable():
                # the input scores must be Variable
                scores_data = np.random.uniform(1, 5, [5, 1]).astype("float32")
347 348 349 350 351 352
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=scores_data,
                                         beam_size=4,
                                         end_id=1)
353 354 355 356 357

            self.assertRaises(TypeError, test_scores_Variable)

            def test_preids_dtype():
                # the dtype of input pre_ids must be int64
358 359 360 361 362 363 364 365 366 367
                preids_type_data = fluid.data(name='preids_type_data',
                                              shape=[1],
                                              lod_level=2,
                                              dtype='float32')
                fluid.layers.beam_search(pre_ids=preids_type_data,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
368 369 370 371 372

            self.assertRaises(TypeError, test_preids_dtype)

            def test_prescores_dtype():
                # the dtype of input pre_scores must be float32
373 374 375 376 377 378 379 380 381 382
                prescores_type_data = fluid.data(name='prescores_type_data',
                                                 shape=[1],
                                                 lod_level=2,
                                                 dtype='int64')
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=prescores_type_data,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
383 384 385 386

            self.assertRaises(TypeError, test_prescores_dtype)


Y
Yan Chunwei 已提交
387 388
if __name__ == '__main__':
    unittest.main()