sequence_pooling_test.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/sequence_pooling.h"
#include <gtest/gtest.h>
#include <vector>

19 20 21 22
template <typename DeviceContext, typename T>
void TestSequencePoolingSum(const DeviceContext &context,
                            const paddle::framework::LoD &lod,
                            const int64_t second_dim) {
23
  paddle::framework::LoDTensor cpu_out_grad;
M
minqiyang 已提交
24
  paddle::framework::LoDTensor cpu_in_grad;
25 26 27 28
  paddle::framework::LoDTensor out_grad;
  paddle::framework::LoDTensor in_grad;

  // construct out_grad's tensor in cpu
M
minqiyang 已提交
29
  const size_t out_first_dim = lod[0].size() - 1;
30
  auto out_dims = paddle::framework::make_ddim(
31
      {static_cast<int64_t>(out_first_dim), second_dim});
32 33

  cpu_out_grad.mutable_data<T>(out_dims, paddle::platform::CPUPlace());
M
minqiyang 已提交
34
  for (int64_t i = 0; i < cpu_out_grad.numel(); ++i) {
35 36 37 38
    cpu_out_grad.data<T>()[i] = static_cast<T>(i);
  }

  // copy to dst out_grad
39 40
  auto place = context.GetPlace();
  if (paddle::platform::is_cpu_place(place)) {
41 42
    out_grad = cpu_out_grad;
  } else {
43
    TensorCopySync(cpu_out_grad, place, &out_grad);
44 45 46 47 48
  }

  // construct in_grad
  in_grad.set_lod(lod);
  auto in_dims = paddle::framework::make_ddim(
49 50
      {static_cast<int64_t>(lod[0].back()), second_dim});
  in_grad.mutable_data<T>(in_dims, place);
51 52 53 54 55 56 57 58 59

  // check tensor contruction result
  PADDLE_ENFORCE_EQ(in_grad.dims().size(), out_grad.dims().size());
  for (int64_t i = 1; i < out_grad.dims().size(); ++i) {
    PADDLE_ENFORCE_EQ(in_grad.dims()[i], out_grad.dims()[i]);
  }

  // call functor
  paddle::operators::math::SequencePoolGradFunctor<DeviceContext, T>()(
60
      context, "SUM", out_grad, &in_grad);
61

62
  if (paddle::platform::is_cpu_place(place)) {
M
minqiyang 已提交
63 64 65 66 67 68
    cpu_in_grad = in_grad;
  } else {
    TensorCopySync(in_grad, paddle::platform::CPUPlace(), &cpu_in_grad);
    cpu_in_grad.set_lod(in_grad.lod());
  }

69
  EXPECT_EQ(in_grad.numel(), static_cast<int64_t>(lod[0].back() * second_dim));
70
  EXPECT_EQ(in_grad.lod(), lod);
M
minqiyang 已提交
71

72
  if (paddle::platform::is_cpu_place(place)) {
T
Tao Luo 已提交
73
    for (size_t i = 0; i < in_grad.lod()[0].size() - 1; ++i) {
M
minqiyang 已提交
74 75 76
      int64_t begin = in_grad.lod()[0][i];
      int64_t end = in_grad.lod()[0][i + 1];
      paddle::framework::Tensor tmp = in_grad.Slice(begin, end);
77
      for (int64_t j = 0; j != tmp.numel() / second_dim; ++j) {
M
minqiyang 已提交
78 79 80 81 82 83 84
        for (int64_t m = 0; m != second_dim; ++m) {
          EXPECT_EQ(tmp.data<T>()[m + j * second_dim],
                    out_grad.data<T>()[m + i * second_dim]);
        }
      }
    }
  } else {
T
Tao Luo 已提交
85
    for (size_t i = 0; i < cpu_in_grad.lod()[0].size() - 1; ++i) {
M
minqiyang 已提交
86 87 88
      int64_t begin = cpu_in_grad.lod()[0][i];
      int64_t end = cpu_in_grad.lod()[0][i + 1];
      paddle::framework::Tensor tmp = cpu_in_grad.Slice(begin, end);
89
      for (int64_t j = 0; j != tmp.numel() / second_dim; ++j) {
M
minqiyang 已提交
90 91 92 93
        for (int64_t m = 0; m != second_dim; ++m) {
          EXPECT_EQ(tmp.data<T>()[m + j * second_dim],
                    cpu_out_grad.data<T>()[m + i * second_dim]);
        }
94 95 96 97 98 99
      }
    }
  }
}

TEST(SequencePoolingGrad, CPU_SUM) {
100 101 102 103
  auto place = paddle::platform::CPUPlace();
  auto *context = static_cast<paddle::platform::CPUDeviceContext *>(
      paddle::platform::DeviceContextPool::Instance().Get(place));

104
  paddle::framework::LoD lod1;
M
minqiyang 已提交
105
  lod1.push_back(std::vector<size_t>{0, 10});
106 107
  TestSequencePoolingSum<paddle::platform::CPUDeviceContext, float>(*context,
                                                                    lod1, 128);
108 109 110

  paddle::framework::LoD lod2;
  lod2.push_back(std::vector<size_t>{0, 2, 7, 10});
111 112
  TestSequencePoolingSum<paddle::platform::CPUDeviceContext, float>(*context,
                                                                    lod2, 128);
113 114 115 116
}

#ifdef PADDLE_WITH_CUDA
TEST(SequencePoolingGrad, CUDA_SUM) {
117 118 119 120
  auto place = paddle::platform::CUDAPlace(0);
  auto *context = static_cast<paddle::platform::CUDADeviceContext *>(
      paddle::platform::DeviceContextPool::Instance().Get(place));

121 122
  paddle::framework::LoD lod1;
  lod1.push_back(std::vector<size_t>{0, 10});
123 124
  TestSequencePoolingSum<paddle::platform::CUDADeviceContext, float>(*context,
                                                                     lod1, 128);
125 126 127

  paddle::framework::LoD lod2;
  lod2.push_back(std::vector<size_t>{0, 2, 7, 10});
128 129
  TestSequencePoolingSum<paddle::platform::CUDADeviceContext, float>(*context,
                                                                     lod2, 128);
130 131
}
#endif