sequence_pooling_test.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/sequence_pooling.h"
#include <gtest/gtest.h>
#include <vector>

template <typename DeviceContext, typename Place, typename T>
void TestSequencePoolingSum(const paddle::framework::LoD& lod) {
  paddle::framework::LoDTensor cpu_out_grad;
M
minqiyang 已提交
22
  paddle::framework::LoDTensor cpu_in_grad;
23 24 25 26 27
  paddle::framework::LoDTensor out_grad;
  paddle::framework::LoDTensor in_grad;
  const size_t second_dim = 128u;

  // construct out_grad's tensor in cpu
M
minqiyang 已提交
28
  const size_t out_first_dim = lod[0].size() - 1;
29 30 31 32
  auto out_dims = paddle::framework::make_ddim(
      {static_cast<int64_t>(out_first_dim), static_cast<int64_t>(second_dim)});

  cpu_out_grad.mutable_data<T>(out_dims, paddle::platform::CPUPlace());
M
minqiyang 已提交
33
  for (int64_t i = 0; i < cpu_out_grad.numel(); ++i) {
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    cpu_out_grad.data<T>()[i] = static_cast<T>(i);
  }

  // copy to dst out_grad
  auto* place = new Place();
  DeviceContext* context = new DeviceContext(*place);
  if (paddle::platform::is_cpu_place(*place)) {
    out_grad = cpu_out_grad;
  } else {
    TensorCopySync(cpu_out_grad, *place, &out_grad);
  }

  // construct in_grad
  in_grad.set_lod(lod);
  auto in_dims = paddle::framework::make_ddim(
      {static_cast<int64_t>(lod[0].back()), static_cast<int64_t>(second_dim)});
M
minqiyang 已提交
50
  in_grad.mutable_data<T>(in_dims, context->GetPlace());
51 52 53 54 55 56 57 58 59

  // check tensor contruction result
  PADDLE_ENFORCE_EQ(in_grad.dims().size(), out_grad.dims().size());
  for (int64_t i = 1; i < out_grad.dims().size(); ++i) {
    PADDLE_ENFORCE_EQ(in_grad.dims()[i], out_grad.dims()[i]);
  }

  // call functor
  paddle::operators::math::SequencePoolGradFunctor<DeviceContext, T>()(
M
minqiyang 已提交
60
      *context, "SUM", out_grad, &in_grad);
61

M
minqiyang 已提交
62 63 64 65 66 67 68
  if (paddle::platform::is_cpu_place(*place)) {
    cpu_in_grad = in_grad;
  } else {
    TensorCopySync(in_grad, paddle::platform::CPUPlace(), &cpu_in_grad);
    cpu_in_grad.set_lod(in_grad.lod());
  }

M
minqiyang 已提交
69
  EXPECT_EQ(in_grad.numel(), lod[0].back() * second_dim);
70
  EXPECT_EQ(in_grad.lod(), lod);
M
minqiyang 已提交
71 72

  if (paddle::platform::is_cpu_place(*place)) {
T
Tao Luo 已提交
73
    for (size_t i = 0; i < in_grad.lod()[0].size() - 1; ++i) {
M
minqiyang 已提交
74 75 76
      int64_t begin = in_grad.lod()[0][i];
      int64_t end = in_grad.lod()[0][i + 1];
      paddle::framework::Tensor tmp = in_grad.Slice(begin, end);
T
Tao Luo 已提交
77
      for (size_t j = 0; j != tmp.numel() / second_dim; ++j) {
M
minqiyang 已提交
78 79 80 81 82 83 84
        for (int64_t m = 0; m != second_dim; ++m) {
          EXPECT_EQ(tmp.data<T>()[m + j * second_dim],
                    out_grad.data<T>()[m + i * second_dim]);
        }
      }
    }
  } else {
T
Tao Luo 已提交
85
    for (size_t i = 0; i < cpu_in_grad.lod()[0].size() - 1; ++i) {
M
minqiyang 已提交
86 87 88
      int64_t begin = cpu_in_grad.lod()[0][i];
      int64_t end = cpu_in_grad.lod()[0][i + 1];
      paddle::framework::Tensor tmp = cpu_in_grad.Slice(begin, end);
T
Tao Luo 已提交
89
      for (size_t j = 0; j != tmp.numel() / second_dim; ++j) {
M
minqiyang 已提交
90 91 92 93
        for (int64_t m = 0; m != second_dim; ++m) {
          EXPECT_EQ(tmp.data<T>()[m + j * second_dim],
                    cpu_out_grad.data<T>()[m + i * second_dim]);
        }
94 95 96 97 98 99 100 101 102 103
      }
    }
  }

  delete place;
  delete context;
}

TEST(SequencePoolingGrad, CPU_SUM) {
  paddle::framework::LoD lod1;
M
minqiyang 已提交
104
  lod1.push_back(std::vector<size_t>{0, 10});
105
  TestSequencePoolingSum<paddle::platform::CPUDeviceContext,
M
minqiyang 已提交
106
                         paddle::platform::CPUPlace, float>(lod1);
107 108 109 110

  paddle::framework::LoD lod2;
  lod2.push_back(std::vector<size_t>{0, 2, 7, 10});
  TestSequencePoolingSum<paddle::platform::CPUDeviceContext,
M
minqiyang 已提交
111
                         paddle::platform::CPUPlace, float>(lod2);
112 113 114 115 116 117 118
}

#ifdef PADDLE_WITH_CUDA
TEST(SequencePoolingGrad, CUDA_SUM) {
  paddle::framework::LoD lod1;
  lod1.push_back(std::vector<size_t>{0, 10});
  TestSequencePoolingSum<paddle::platform::CUDADeviceContext,
M
minqiyang 已提交
119
                         paddle::platform::CUDAPlace, float>(lod1);
120 121 122 123

  paddle::framework::LoD lod2;
  lod2.push_back(std::vector<size_t>{0, 2, 7, 10});
  TestSequencePoolingSum<paddle::platform::CUDADeviceContext,
M
minqiyang 已提交
124
                         paddle::platform::CUDAPlace, float>(lod2);
125 126
}
#endif