analysis_config.cc 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
17
#include "paddle/fluid/platform/cpu_info.h"
18
#include "paddle/fluid/platform/enforce.h"
19
#include "paddle/fluid/platform/gpu_info.h"
20 21

namespace paddle {
W
wanghuancoder 已提交
22 23
struct MkldnnQuantizerConfig;

24
extern const std::vector<std::string> kTRTSubgraphPasses;
石晓伟 已提交
25
extern const std::vector<std::string> kLiteSubgraphPasses;
26

27
PassStrategy *AnalysisConfig::pass_builder() const {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

44 45 46
  return pass_builder_.get();
}

47
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
48
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
49 50

  Update();
51
}
52 53
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
54 55
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
56 57

  Update();
58
}
59 60
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
61 62
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
63 64

  Update();
65
}
66 67
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
68 69 70 71 72
#ifdef PADDLE_WITH_CUDA
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
  device_id_ = device_id;
#else
Y
Yan Chunwei 已提交
73
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
74 75
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
76 77 78

  Update();
}
79
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
80 81 82
  use_gpu_ = false;

  Update();
83 84
}

85 86 87 88 89 90
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

91 92 93 94 95 96
void AnalysisConfig::EnableXpu(int l3_workspace_size) {
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
  Update();
}

97
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
98 99 100 101 102 103
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
104

105
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
106 107
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
108

109
  CP_MEMBER(use_fc_padding_);
110
  // GPU related.
111
  CP_MEMBER(use_gpu_);
112
  CP_MEMBER(use_cudnn_);
113 114
  CP_MEMBER(device_id_);
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
115 116

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
117
  // TensorRT related.
118 119 120 121
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
122
  CP_MEMBER(tensorrt_precision_mode_);
N
nhzlx 已提交
123
  CP_MEMBER(trt_use_static_engine_);
124
  CP_MEMBER(trt_use_calib_mode_);
125
  CP_MEMBER(trt_use_oss_);
S
Sylwester Fraczek 已提交
126
  // MKLDNN related.
127 128
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
129
  CP_MEMBER(mkldnn_cache_capacity_);
130 131 132
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
133 134 135
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
136 137 138
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
139
  CP_MEMBER(disable_trt_plugin_fp16_);
140

石晓伟 已提交
141 142 143 144
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
145 146 147 148
  CP_MEMBER(lite_zero_copy_);

  CP_MEMBER(use_xpu_);
  CP_MEMBER(xpu_l3_workspace_size_);
石晓伟 已提交
149

150 151 152
  // profile related.
  CP_MEMBER(with_profile_);

153 154 155
  // glog related.
  CP_MEMBER(with_glog_info_);

156 157 158 159 160 161 162 163 164 165
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

166 167
  CP_MEMBER(thread_local_stream_);

168
  if (use_gpu_) {
169 170 171 172 173 174 175
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

176
#undef CP_MEMBER
Y
Yan Chunwei 已提交
177 178

  Update();
179 180
}

181 182 183 184 185 186 187 188 189 190 191
void AnalysisConfig::EnableCUDNN() {
#ifdef PADDLE_WITH_CUDA
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

192
void AnalysisConfig::EnableMKLDNN() {
193 194 195 196 197 198
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
199 200

  Update();
201 202
}

203 204 205 206 207 208 209 210 211
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

212 213 214 215 216 217 218 219 220 221 222 223 224
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

225 226
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
227 228 229 230 231 232
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
233 234 235 236 237 238 239 240
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

241
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
242
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
243 244
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
245
  return mkldnn_quantizer_config_.get();
246 247
}

248
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
249
    int workspace_size, int max_batch_size, int min_subgraph_size,
250
    AnalysisConfig::Precision precision_mode, bool use_static,
251
    bool use_calib_mode) {
Y
Yan Chunwei 已提交
252 253 254 255 256 257
#ifdef PADDLE_WITH_CUDA
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

258 259 260
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
261
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
262
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
263
  trt_use_static_engine_ = use_static;
264
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
265

266
  Update();
Y
Yan Chunwei 已提交
267 268 269 270
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
271 272
}

273 274 275 276 277 278 279 280 281 282 283
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

284 285 286 287
void AnalysisConfig::EnableTensorRtOSS() {
    trt_use_oss_ = true;
}

Y
Yan Chunwei 已提交
288
// TODO(Superjomn) refactor this, buggy.
289
void AnalysisConfig::Update() {
290 291 292
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
293 294 295 296 297 298 299 300 301 302 303 304
  // Transfer pass_builder and copy the existing compatible passes.
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
305

306
  } else {
Y
Yan Chunwei 已提交
307 308 309 310 311 312 313 314
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));

    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
315 316 317
  }

  if (use_tensorrt_) {
318 319
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
320
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
321 322 323
          (pass == "conv_bn_fuse_pass" || pass == "fc_fuse_pass")) {
        continue;
      }
324
      pass_builder()->AppendPass(pass);
325 326
    }
  }
327 328 329 330 331 332 333 334 335 336
  if (use_gpu() && use_cudnn_) {
#ifdef PADDLE_WITH_CUDA
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

337
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
338
#ifdef PADDLE_WITH_MKLDNN
339 340 341
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
342 343
    } else {
      pass_builder()->EnableMKLDNN();
344 345 346 347
    }
#endif
  }

348 349 350 351 352
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
353 354
    }
#ifdef PADDLE_WITH_MKLDNN
355
    pass_builder()->EnableMkldnnQuantizer();
356 357 358
#endif
  }

359 360 361 362 363 364
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

365
#ifdef PADDLE_WITH_MKLDNN
366 367
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
368
#else
Y
Yan Chunwei 已提交
369
  if (enable_memory_optim_) {
370 371
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
372 373
  }

石晓伟 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

388
  if (use_xpu_) {
389
#ifndef LITE_SUBGRAPH_WITH_XPU
390 391 392 393 394 395 396 397 398 399 400 401 402 403
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
    if (!use_lite_) {
      LOG(WARNING) << "Because XPU currently only works in Paddle-Lite "
                      "subgraph mode, please make sure you have enabled it.";
    }
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
  }

404 405 406 407 408
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

409
std::string AnalysisConfig::SerializeInfoCache() {
410
  std::stringstream ss;
Y
Yan Chunwei 已提交
411 412 413 414
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

415
  ss << use_gpu_;
416
  ss << use_fc_padding_;
Y
Yan Chunwei 已提交
417
  ss << device_id_;
418 419 420 421 422
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
423 424 425
  ss << tensorrt_min_subgraph_size_;

  ss << enable_memory_optim_;
426 427

  ss << use_mkldnn_;
428
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
429 430 431
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

432
  ss << use_mkldnn_quantizer_;
433
  ss << use_mkldnn_bfloat16_;
434 435
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
436 437
  ss << model_from_memory_;

438 439
  ss << with_profile_;

440 441
  ss << with_glog_info_;

442 443 444 445
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
446 447
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
448 449

  ss << use_lite_;
450 451
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
452

453 454
  ss << thread_local_stream_;

455 456 457
  return ss.str();
}

458
void AnalysisConfig::SetCpuMathLibraryNumThreads(
459 460
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
461 462

  Update();
463 464
}

465
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
466 467 468 469
#ifdef PADDLE_WITH_CUDA
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
  size_t gpu_used, gpu_available;
470
  platform::SetDeviceId(device_id_);
471 472 473 474 475 476 477 478
  platform::GpuMemoryUsage(&gpu_used, &gpu_available);
  double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.;
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
479 480
}

481
void AnalysisConfig::EnableMemoryOptim() {
Y
Yan Chunwei 已提交
482 483 484 485
  enable_memory_optim_ = true;
  Update();
}

486
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
487 488 489
  return enable_memory_optim_;
}

490 491 492 493
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
494 495
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
496
  model_from_memory_ = true;
Y
Yan Chunwei 已提交
497 498

  Update();
T
Tao Luo 已提交
499 500
}

501
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
502 503 504 505 506 507 508 509 510 511 512
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
  config.device = device_id_;
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
513 514 515 516
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
517 518 519 520 521 522

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

523 524 525 526 527
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
528
void AnalysisConfig::EnableLiteEngine(
529
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
530 531 532 533 534 535
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
536
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
537 538 539
  Update();
}

540 541 542 543 544 545 546
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

547 548
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

549
}  // namespace paddle