completion.py 84.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17

18
from paddle.distributed.fleet.meta_optimizers.common import OpRole
19 20
from paddle.fluid import core

21 22 23 24
from .dist_attribute import (
    OperatorDistributedAttribute,
    TensorDistributedAttribute,
)
25
from .dist_context import _node_id
26
from .operators import find_compatible_distributed_operator_impls
27
from .process_group import get_world_process_group
28 29 30 31 32 33 34
from .process_mesh import ProcessMesh
from .utils import (
    __no_shape_var_type__,
    get_logger,
    is_gradient_clip_op,
    is_naive_data_parallel,
)
35 36


37 38 39 40
def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    def _compute_compatible_process_mesh_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.processes == pm2.processes:
            if len(pm1.topology) >= len(pm2.topology):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.processes)
        process_set2 = set(pm2.processes)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_two(
65 66
            compatible_result, process_mesh
        )
67 68 69 70 71 72 73 74 75
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
76

77 78 79 80 81 82 83 84 85 86 87 88
    def _compute_compatible_dim_mapping_two(dm1, dm2):
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
        compatible, compatible_result = _compute_compatible_dim_mapping_two(
89 90
            compatible_result, mapping
        )
91 92 93 94 95 96 97
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
98
    Each of dims mapping is also a list.
99
    """
100 101 102 103 104 105 106 107 108 109 110
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
111 112
            list(dim_mappings)
        )
113 114 115 116 117 118
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


119 120 121 122 123 124 125 126 127 128 129 130 131 132
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
        process_set1 = set(pm1.processes)
    if pm2 is not None:
        process_set2 = set(pm2.processes)
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


133 134 135 136 137
def _validate_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(
138 139
            process_mesh.topology
        ):
140 141 142 143 144 145 146
            return False
    for i in range(len(process_mesh.topology)):
        if dims_mapping.count(i) > 1:
            return False
    return True


147 148 149 150
class Completer:
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context
151
        self._has_prepared = False
152
        self._logger = get_logger(logging.INFO, "Completer")
153 154 155 156 157 158 159

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
Z
zhaoyingli 已提交
160
        if tensor_desc.type() in __no_shape_var_type__:
161 162
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
163 164
            tensor_node
        )
165 166 167 168 169 170 171 172
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
173 174 175 176 177 178
                    if (
                        pred_op_node.op().type() == "create_py_reader"
                        or pred_op_node.op().type()
                        == "create_double_buffer_reader"
                        or pred_op_node.op().type() == "read"
                    ):
179
                        continue
180 181 182 183 184 185 186 187 188
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            pred_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
189
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
190 191
                            tensor_desc.name()
                        )
192 193 194
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
195 196 197 198 199
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
200
                return False
201 202 203
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
204
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
205 206
                changed = True
        else:
207 208 209
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
210 211 212 213 214 215
                    if (
                        succ_op_node.op().type() == "create_py_reader"
                        or succ_op_node.op().type()
                        == "create_double_buffer_reader"
                        or succ_op_node.op().type() == "read"
                    ):
216
                        continue
217 218 219 220 221 222 223 224 225
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            succ_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
226
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
227 228
                            tensor_desc.name()
                        )
229 230 231
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
232 233 234 235 236
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
237
                return False
238 239 240
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
241
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
242
                changed = True
243
        return changed
244

245 246 247 248 249 250
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
251 252 253 254 255 256
        if (
            op_desc.type() == "create_py_reader"
            or op_desc.type() == "create_double_buffer_reader"
            or op_desc.type() == "while"
            or op_desc.type() == "read"
        ):
257 258 259
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
260
        original_op_dist_attr = copy.deepcopy(op_dist_attr)
261 262
        if fwd:
            for tensor_node in op_node.inputs:
263
                if tensor_node.is_var() and tensor_node.var() is not None:
264 265 266 267
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
268 269
                        tensor_desc.name()
                    ):
270
                        continue
271 272 273 274 275 276 277 278 279
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
280 281
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
282 283 284 285 286 287 288
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
289
                        if not _validate_dims_mapping(
290 291
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
292
                            continue
293 294 295
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
296
                            op_dist_attr.set_input_dims_mapping(
297 298
                                tensor_desc.name(), compatible_dims_mapping
                            )
299 300
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
301 302 303
            op_dist_impls = find_compatible_distributed_operator_impls(
                dist_op, fwd=True
            )
304 305 306 307 308 309 310 311
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
312 313 314 315
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
316 317 318 319 320 321 322 323
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
324
                    else:
325 326 327 328 329 330 331 332
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
333
        else:
334
            for tensor_node in op_node.outputs:
335
                if tensor_node.is_var() and tensor_node.var() is not None:
336 337 338 339
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
340 341
                        tensor_desc.name()
                    ):
342
                        continue
343 344 345 346 347 348 349 350 351
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
352 353
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
354 355 356 357 358 359 360
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
361
                        if not _validate_dims_mapping(
362 363
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
364
                            continue
365 366 367
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
368
                            op_dist_attr.set_output_dims_mapping(
369 370
                                tensor_desc.name(), compatible_dims_mapping
                            )
371 372
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
373
            op_dist_impls = find_compatible_distributed_operator_impls(
374 375
                dist_op, fwd=False
            )
376 377 378 379 380 381 382 383
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
384 385 386 387
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
388 389 390 391 392 393 394 395
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
396
                    else:
397 398 399 400 401 402 403 404
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
405
        return changed
406

407 408 409 410
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
411 412
                parent_node
            )
413
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
414 415 416 417 418 419
                child_node
            )
            if (
                parent_node_dist_attr.process_mesh
                != child_node_dist_attr.process_mesh
            ):
420
                continue
421 422 423
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
424 425 426 427 428
                [parent_node_dims_mapping, child_node_dims_mapping]
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, parent_node_dist_attr.process_mesh
            ):
429
                return False
430 431 432
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != parent_node_dims_mapping
            ):
433 434
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
435 436 437
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != child_node_dims_mapping
            ):
438
                child_node_dist_attr.dims_mapping = compatible_dims_mapping
439 440
                changed = True
        return changed
441

442 443 444
    def _update_dims_mapping_for_special(self):
        # Set the dims_mapping of a tensor to the dims_mapping inside the op which produces it
        op_nodes = self._dist_context._serial_ordered_op_nodes
445 446
        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
447 448 449
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
450
        ]
451
        for op_node in op_nodes:
452 453 454 455
            if (
                op_node.op() is not None
                and op_node.op().type() in related_reader_ops
            ):
456
                continue
457 458 459 460 461 462
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() and tensor_node.var() is not None:
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
463 464 465 466 467 468 469 470 471
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
472
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
473 474
                            tensor_desc.name()
                        )
475 476
                        tensor_dist_attr.dims_mapping = op_dims_mapping

477 478 479 480
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
481
            changed = False
482
            for is_fwd in [True, False]:
483 484 485 486 487
                all_nodes = (
                    self._dist_context.serial_ordered_nodes
                    if is_fwd
                    else reversed(self._dist_context.serial_ordered_nodes)
                )
488 489 490
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
491 492
                            node, fwd=is_fwd
                        )
493 494 495 496
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
497 498
                            node, fwd=is_fwd
                        )
499 500
                        if op_changed:
                            changed = True
501 502 503
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
504
            if changed:
505
                reach_fix_point = False
506
            else:
507
                reach_fix_point = True
508
        # NOTE: this will be removed after changing the reshard rule
509
        self._update_dims_mapping_for_special()
510

511 512 513 514 515 516
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
517 518
                nearest_op_node
            )
519 520
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
521 522 523 524 525 526
                [process_mesh, nearest_process_mesh]
            )
            if (
                compatible_process_mesh is not None
                and process_mesh != compatible_process_mesh
            ):
527 528 529 530 531 532 533
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
534 535 536 537 538
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
539 540 541 542 543 544
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
545 546 547 548 549 550
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
551
                    tensor_dist_attr.process_mesh = compatible_process_mesh
552
                # Set the process mesh of the op node's outputs
553 554
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
555 556 557 558 559
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
560 561 562
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
563 564 565 566 567 568
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
569 570 571 572 573
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
574 575 576 577 578
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
579 580 581
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
582 583 584 585 586 587
            for node in nodes[idx + 1 :]:
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
588 589 590 591 592 593 594 595 596 597 598 599 600 601
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
602 603
                neighbors = cur.inputs + cur.outputs
                for node in neighbors:
604
                    if node.is_var() and node.var() is not None:
605 606 607 608
                        if (
                            node.var().type() != core.VarDesc.VarType.READER
                            and len(node.var().shape()) == 1
                        ):
609 610 611 612
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
613 614 615 616 617
                        if (
                            node.op().type() == "create_py_reader"
                            or node.op().type() == "create_double_buffer_reader"
                            or node.op().type() == "read"
                        ):
618 619
                            flag = False
                        for tensor_node in node.inputs:
620 621 622 623 624 625
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
Z
zhaoyingli 已提交
626
                                    in __no_shape_var_type__
627 628
                                    or len(tensor_node.var().shape()) != 1
                                ):
629 630 631
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
632 633 634 635 636 637
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
Z
zhaoyingli 已提交
638
                                    in __no_shape_var_type__
639 640
                                    or len(tensor_node.var().shape()) != 1
                                ):
641 642 643 644 645 646 647 648
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        def _make_dims_mapping_replicate(dist_attr):
            if isinstance(dist_attr, TensorDistributedAttribute):
                for i, _ in enumerate(dist_attr.dims_mapping):
                    dist_attr.dims_mapping[i] = -1
            if isinstance(dist_attr, OperatorDistributedAttribute):
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
665 666 667
                    dist_attr.set_output_dims_mapping(
                        arg_name, new_dims_mapping
                    )
668

669 670 671
        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
672
            sub_graph = self._dist_context.serial_graph.get_sub_graph(
673 674
                sub_graph_id
            )
675 676
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
677 678
                while_op_node
            )
679 680 681 682 683
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
684 685 686
                if (node.is_var() and node.var() is not None) or (
                    node.is_op() and node.op() is not None
                ):
687 688
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
689 690
                        merged_process_mesh, dist_attr.process_mesh
                    )
691
            while_op_dist_attr.process_mesh = merged_process_mesh
692
            _make_dims_mapping_replicate(while_op_dist_attr)
693 694 695 696 697 698 699

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
700 701 702 703 704
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                ):
705 706 707 708 709
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
710 711
                _find_nodes_related_to_cond(cond_tensor_node)
            )
712 713 714 715

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
716 717 718 719 720 721
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                    and len(node.outputs) == 0
                ):
722 723 724 725
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
726 727
                _find_nodes_related_to_cond(cond_tensor_node)
            )
728 729 730 731
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
732 733 734 735 736
                if (
                    output_node.is_var()
                    and output_node.var() is not None
                    and output_node.var().name() == stepscopes_tensor_name
                ):
737 738 739 740 741
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
742 743
                    node
                )
744
                tensor_dist_attr.process_mesh = merged_process_mesh
745
                _make_dims_mapping_replicate(tensor_dist_attr)
746 747 748

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
749 750 751 752
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_inputs_dist_attrs.items():
753
                nearest_tensor_node = _find_nearest_tensor_node_before(
754 755 756 757 758 759 760 761 762 763 764 765
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
766 767 768

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
769 770 771 772
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_outputs_dist_attrs.items():
773
                nearest_tensor_node = _find_nearest_tensor_node_before(
774 775 776 777
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
778 779 780
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
781 782 783 784 785 786 787 788 789 790 791
                        while_op_node_idx,
                        tensor_name,
                    )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
792 793 794 795 796 797

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
798 799
                    array_node
                )
800
                merged_process_mesh = merge_process_mesh_two(
801 802
                    merged_process_mesh, dist_attr.process_mesh
                )
803 804
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
805 806
                    array_node
                )
807
                dist_attr.process_mesh = merged_process_mesh
808 809 810 811 812
                _make_dims_mapping_replicate(dist_attr)

    def _update_process_mesh_between_graphs(self):
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
813 814
                parent_node
            )
815
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
816 817 818
                child_node
            )
            parent_node_dist_attr.process_mesh = (
819
                child_node_dist_attr.process_mesh
820 821 822 823 824 825 826 827 828 829 830 831
            )
            compatible_process_mesh = compute_compatible_process_mesh(
                [
                    parent_node_dist_attr.process_mesh,
                    child_node_dist_attr.process_mesh,
                ]
            )
            if (
                compatible_process_mesh is not None
                and parent_node_dist_attr.process_mesh
                != compatible_process_mesh
            ):
832
                parent_node_dist_attr.process_mesh = compatible_process_mesh
833 834 835 836
            if (
                compatible_process_mesh is not None
                and child_node_dist_attr.process_mesh != compatible_process_mesh
            ):
837
                child_node_dist_attr.process_mesh = compatible_process_mesh
838 839 840 841 842 843 844

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
845 846 847
            tensor_dist_attr = (
                self._dist_context.get_tensor_dist_attr_for_graph(tensor_node)
            )
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
865 866
                first_op_node
            )
867
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
868 869
                "process_mesh"
            ):
870
                compatible_process_mesh = compute_compatible_process_mesh(
871 872 873 874 875 876
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and op_dist_attr.process_mesh != compatible_process_mesh
                ):
877 878 879 880 881 882 883
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
884 885 886 887
            if (
                op_dist_attr.process_mesh is not None
                and idx_of_first_op_node_has_process_mesh == -1
            ):
888 889 890 891 892 893
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
894
        for idx, op_node in enumerate(
895 896
            ordered_op_nodes[idx_of_first_op_node_has_process_mesh + 1 :]
        ):
897
            original_idx = idx_of_first_op_node_has_process_mesh + idx + 1
898 899
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
900 901
                nearest_op_node
            )
902 903 904 905 906
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
907 908
            idx_of_first_op_node_has_process_mesh
        ]
909 910 911 912 913 914
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

915
        # Step 4: adjust the process meshes between graphs
916 917
        self._update_process_mesh_between_graphs()

918
    def _prepare(self):
919 920
        if self._has_prepared:
            return
921 922 923 924 925 926 927 928 929 930 931 932 933
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
934 935
                    # Add the array input node
                    self._array_nodes[array_var_name].append(node.inputs[0])
936 937 938 939 940 941 942 943 944
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
945 946 947 948 949 950 951
                        if (
                            before_node.is_var()
                            and before_node.var() is not None
                            and before_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and before_node.var().name() == node.var().name()
                        ):
952
                            self._node_pairs_between_graphs.append(
953 954 955 956 957 958 959 960 961 962
                                (before_node, node)
                            )
                    for after_node in all_nodes[idx + 1 :]:
                        if (
                            after_node.is_var()
                            and after_node.var() is not None
                            and after_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and after_node.var().name() == node.var().name()
                        ):
963
                            self._node_pairs_between_graphs.append(
964 965
                                (after_node, node)
                            )
966
        self._has_prepared = True
967

968
    def complete_forward_annotation(self, serial_main_program=None):
969
        """Complete annotation for the partial annotated serial_main_program.
970 971
        Arguments:
            serial_main_program: partial annotated serial_main_program.
972
        Returns:e
973 974 975
            serial_main_program: completed annotated serial_main_program.
        """

976 977 978
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
979
            self._dist_context._serial_main_program = serial_main_program
980

981
        if not is_naive_data_parallel(self._dist_context):
982 983 984 985 986 987 988
            self._dist_context.initialize(with_graph=True)
            self._prepare()
            self._update_process_mesh()
            self._update_dims_mapping()
            # Copy the corresponding distributed attribute from graph to serial_main_program
            self._dist_context.copy_dist_attr_from_graph_to_program()
        else:
Z
zhaoyingli 已提交
989
            self._logger.info("Default distributed attributed will be set.")
990 991 992 993
            self._dist_context.initialize(with_graph=False)
            # A fast and special completion for data parallel
            self._update_dist_attr_for_dp()

994
        # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient
995
        self._complete_high_order_grad_annotation(serial_main_program)
996 997 998 999 1000
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()
        return serial_main_program

1001 1002 1003 1004
    def _update_dist_attr_for_dp(self):
        # TODO: we must ensure the world process group contains all ranks
        ranks = get_world_process_group().ranks
        process_mesh = ProcessMesh(ranks)
1005 1006 1007 1008 1009 1010 1011

        dist_tensors = self._dist_context._dist_tensors_for_program
        for dist_tensor in dist_tensors.values():
            dist_tensor.dist_attr.process_mesh = process_mesh

        dist_ops = self._dist_context._dist_ops_for_program
        for dist_op in dist_ops.values():
1012 1013 1014 1015
            serial_op = dist_op.serial_op
            op_dist_attr = dist_op.dist_attr
            op_dist_attr.process_mesh = process_mesh
            original_op_dist_attr = copy.deepcopy(op_dist_attr)
1016

1017 1018 1019
            for arg_name in serial_op.input_arg_names:
                serial_tensor = dist_op.get_serial_input(arg_name)
                if not serial_tensor.is_parameter:
1020 1021 1022
                    dist_tensor = (
                        self._dist_context.get_dist_tensor_for_program(
                            serial_tensor
1023 1024
                        )
                    )
1025 1026 1027 1028 1029 1030
                    op_dist_attr = dist_op.dist_attr
                    op_dist_attr.process_mesh = (
                        dist_tensor.dist_attr.process_mesh
                    )
                    op_dist_attr.set_input_dims_mapping(
                        arg_name, dist_tensor.dist_attr.dims_mapping
1031
                    )
1032 1033

            op_dist_impls = find_compatible_distributed_operator_impls(
1034
                dist_op, fwd=True
1035
            )
1036 1037 1038 1039 1040
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                for op_dist_impl in op_dist_impls:
                    op_dist_impl.update_dims_mapping(dist_op)
1041 1042 1043 1044
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
                        op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
                    else:
                        dist_op.dist_attr = backup_op_dist_attr
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
            else:
                dist_op.dist_attr = original_op_dist_attr

1056 1057 1058
            for arg_name in serial_op.output_arg_names:
                op_dist_attr = dist_op.dist_attr
                serial_tensor = dist_op.get_serial_output(arg_name)
Z
zhaoyingli 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
                if serial_op.type in ["fill_constant"]:
                    old_dims_mapping = op_dist_attr.get_output_dims_mapping(
                        arg_name
                    )
                    if len(old_dims_mapping) > 0:
                        new_dims_mapping = [0] + [
                            -1 for _ in range(len(old_dims_mapping) - 1)
                        ]
                        op_dist_attr.set_output_dims_mapping(
                            arg_name, new_dims_mapping
                        )
1070 1071 1072 1073 1074 1075 1076
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
                    serial_tensor
                )
                dist_tensor.dist_attr.dims_mapping = (
                    op_dist_attr.get_output_dims_mapping(arg_name)
                )

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    def _complete_tensor_dist_attr_by_op(self, serial_main_program=None):
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

        self._dist_context.initialize()

        self._prepare()

        has_set_dist_attr = set()

        all_nodes = self._dist_context.serial_ordered_nodes
        for node in all_nodes:
            if node.is_op():
                if node.op().type() in ["while"]:
                    continue
                dist_op = self._dist_context.get_dist_op_for_graph(node)
                op_dist_attr = dist_op.dist_attr
                for tensor_node in node.inputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        # Skip the non-leaf var node
                        if len(tensor_node.inputs) != 0:
                            continue
                        tensor_desc = tensor_node.var()
                        tensor_name = tensor_desc.name()
                        tensor = dist_op.get_serial_input(tensor_name)
                        # Use the first op to set the tensor dist attr
                        if tensor_name in has_set_dist_attr:
                            continue
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_input_dims_mapping(tensor_name)
                            if tensor.is_parameter
                            else [-1 for i in tensor_desc.shape()]
                        )
1120 1121 1122 1123 1124 1125
                        has_set_dist_attr.add(tensor_name)
                for tensor_node in node.outputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        tensor_name = tensor_node.var().name()
                        if tensor_name in has_set_dist_attr:
                            continue
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_output_dims_mapping(tensor_name)
                        )
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
                        has_set_dist_attr.add(tensor_name)

        self._update_process_mesh_for_specials()

        self._update_process_mesh_between_graphs()

        self._update_dims_mapping_for_special()

        self._update_dims_mapping_between_graphs()

        # Copy the corresponding distributed attribute from graph to serial_main_program
        self._dist_context.copy_dist_attr_from_graph_to_program()

        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

1155
    def _complete_high_order_grad_annotation(self, serial_main_program=None):
1156
        """
1157
        NOTE:
1158 1159 1160 1161
            [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient.
            This function is temporary to support high order gradient, and will be removed in the future.
        """

1162 1163 1164 1165 1166
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

1167 1168 1169 1170 1171 1172 1173
        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_op_by_id(ops, id):
            for op in ops:
1174
                if op.desc.original_id() == id:
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
                    return op
            return None

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
        grad_var_to_var = dist_op_context.grad_var_to_var

        appended_grad_times = 0
        for idx in range(0, len(ops)):
            op = ops[idx]
            if int(op.attr('op_role')) == int(
1187 1188
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1189 1190 1191
                continue

            if int(op.attr('op_role')) == int(
1192 1193 1194 1195
                core.op_proto_and_checker_maker.OpRole.Backward
            ) and int(ops[idx - 1].attr('op_role')) == int(
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1196 1197
                appended_grad_times += 1

1198
            if int(op.attr('op_role')) == int(
1199 1200 1201
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1202 1203 1204
                assert op.type == "fill_constant"
                break

1205 1206 1207
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1208 1209 1210 1211
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1212
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1213
                forward_op = _get_op_by_id(
1214 1215 1216 1217 1218
                    ops,
                    dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()
                    ],
                )
1219 1220
                assert forward_op is not None

1221 1222 1223
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1224 1225 1226 1227 1228
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh

                for input_name in grad_op.input_arg_names:
1229 1230 1231 1232
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1233 1234
                        if input_name in grad_var_to_var[appended_grad_times]:
                            fwd_name = grad_var_to_var[appended_grad_times][
1235 1236 1237 1238 1239 1240 1241
                                input_name
                            ]
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1242 1243 1244
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1245 1246
                                input_var
                            ).dims_mapping
1247
                    else:
1248
                        if input_name in forward_op.input_arg_names:
1249 1250 1251 1252 1253
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1254
                        else:
1255 1256 1257 1258 1259 1260 1261 1262
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1263
                    grad_op_dist_attr.set_input_dims_mapping(
1264 1265
                        input_name, ref_dims_mapping
                    )
1266 1267 1268 1269 1270

                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var[appended_grad_times]
                    fwd_name = grad_var_to_var[appended_grad_times][output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1271 1272
                        fwd_name
                    )
1273 1274 1275 1276 1277 1278
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1279 1280
                        output_var, tensor_dist_attr
                    )
1281
                    # op
1282
                    grad_op_dist_attr.set_output_dims_mapping(
1283 1284
                        output_name, ref_dims_mapping
                    )
1285 1286

                self._dist_context.set_op_dist_attr_for_program(
1287 1288
                    grad_op, grad_op_dist_attr
                )
1289 1290 1291 1292 1293 1294 1295

            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
            else:

                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1296 1297 1298 1299 1300
                    assert (
                        output_name in grad_var_to_var[appended_grad_times]
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1301
                    ref_fwd_var_name = grad_var_to_var[appended_grad_times][
1302 1303
                        output_name
                    ]
1304
                    ref_fwd_var = vars[ref_fwd_var_name]
1305 1306 1307 1308 1309
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1310 1311 1312 1313 1314 1315 1316 1317
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1318 1319
                        output_var, tensor_dist_attr
                    )
1320 1321 1322 1323 1324
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1325 1326
                            var_name, ref_fwd_dims_mapping
                        )
1327
                    grad_op_dist_attr.set_output_dims_mapping(
1328 1329
                        output_name, ref_fwd_dims_mapping
                    )
1330

1331
                elif grad_op.type == 'fill_any_like':
1332 1333
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1334 1335 1336 1337 1338
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1339 1340 1341 1342 1343 1344 1345 1346 1347
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1348 1349
                        output_var, tensor_dist_attr
                    )
1350 1351 1352
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1353
                    grad_op_dist_attr.set_input_dims_mapping(
1354 1355
                        ref_var_name, ref_dims_mapping
                    )
1356
                    grad_op_dist_attr.set_output_dims_mapping(
1357 1358
                        output_var_name, ref_dims_mapping
                    )
1359 1360 1361 1362 1363

                elif grad_op.type in ['shape', 'fill_constant']:
                    continue

                else:
1364 1365 1366
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1367 1368

                self._dist_context.set_op_dist_attr_for_program(
1369 1370
                    grad_op, grad_op_dist_attr
                )
1371

1372
    def complete_backward_annotation(self, serial_main_program=None):
1373
        """Complete the annotation of vars and ops in the backward phase for parallel program."""
1374

1375 1376 1377
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
1378
            self._dist_context._serial_main_program = serial_main_program
1379 1380 1381 1382 1383 1384 1385 1386

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
1387 1388 1389
                grad_var_name
            ), "[{}] is not a grad varnme.".format(grad_var_name)
            return grad_var_name[: grad_var_name.find("@GRAD")]
1390 1391 1392

        def _get_op_by_id(ops, id):
            for op in ops:
1393
                if op.desc.original_id() == id:
1394 1395 1396 1397 1398 1399
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
1400 1401 1402
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1403 1404 1405 1406
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

1407 1408 1409
        assert (
            first_backward_op_idx >= 0
        ), "No backward procedure found in this program."
1410 1411 1412 1413

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
1414 1415 1416
        grad_var_to_var = dist_op_context.grad_var_to_var[
            len(dist_op_context.grad_var_to_var)
        ]
1417 1418 1419 1420 1421 1422

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
                assert (
                    len(ops[idx].input_arg_names) == 0
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names)
                )
                assert (
                    len(ops[idx].output_arg_names) == 1
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names)
                )
1433 1434 1435

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
1436 1437
                    grad_var.name
                )
1438 1439 1440 1441
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
                process_mesh = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).process_mesh
                )
                dims_mapping = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).dims_mapping
                )
1452 1453 1454
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
1455 1456
                    grad_var, tensor_dist_attr
                )
1457

1458 1459
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
1460 1461 1462
                op_dist_attr.set_output_dims_mapping(
                    grad_var.name, dims_mapping
                )
1463
                self._dist_context.set_op_dist_attr_for_program(
1464 1465
                    ops[idx], op_dist_attr
                )
1466
                continue
1467

1468 1469 1470
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1471 1472 1473 1474
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1475
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1476 1477 1478
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[
1479 1480 1481
                        grad_op.desc.original_id()
                    ],
                )
1482 1483
                assert forward_op is not None

J
JZ-LIANG 已提交
1484
                if grad_op.type == "concat" and forward_op.type == "split":
1485 1486 1487 1488 1489
                    forward_op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_program(
                            forward_op
                        )
                    )
J
JZ-LIANG 已提交
1490 1491
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
1492 1493 1494 1495 1496
                    ref_dims_mapping = (
                        forward_op_dist_attr.get_input_dims_mapping(
                            split_input_var_name
                        )
                    )
J
JZ-LIANG 已提交
1497 1498 1499 1500 1501
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1502 1503
                            input_name, ref_dims_mapping
                        )
J
JZ-LIANG 已提交
1504 1505 1506 1507

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1508
                    self._dist_context.set_tensor_dist_attr_for_program(
1509 1510
                        output_var, output_var_dist_attr
                    )
J
JZ-LIANG 已提交
1511

1512
                    grad_op_dist_attr.set_output_dims_mapping(
1513 1514
                        output_var.name, ref_dims_mapping
                    )
J
JZ-LIANG 已提交
1515
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1516
                    self._dist_context.set_op_dist_attr_for_program(
1517 1518
                        grad_op, grad_op_dist_attr
                    )
1519 1520 1521 1522 1523 1524
                    grad_op_dist_attr.impl_type = (
                        fwd_op_dist_attr.impl_type  # noqa: F821
                    )
                    grad_op_dist_attr.impl_idx = (
                        fwd_op_dist_attr.impl_idx  # noqa: F821
                    )
1525

J
JZ-LIANG 已提交
1526 1527
                    continue

1528 1529 1530
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1531
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
1532
                grad_op_dist_attr = OperatorDistributedAttribute()
1533
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh
1534 1535

                for input_name in grad_op.input_arg_names:
1536 1537 1538 1539
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1540 1541
                        if input_name in grad_var_to_var:
                            fwd_name = grad_var_to_var[input_name]
1542 1543 1544 1545 1546
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1547 1548 1549
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1550 1551
                                input_var
                            ).dims_mapping
1552
                    else:
1553
                        if input_name in forward_op.input_arg_names:
1554 1555 1556 1557 1558
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1559
                        else:
1560 1561 1562 1563 1564 1565 1566 1567
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1568
                    grad_op_dist_attr.set_input_dims_mapping(
1569 1570
                        input_name, ref_dims_mapping
                    )
1571

1572 1573 1574 1575
                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var
                    fwd_name = grad_var_to_var[output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1576 1577
                        fwd_name
                    )
1578 1579 1580 1581 1582 1583
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1584 1585
                        output_var, tensor_dist_attr
                    )
1586
                    # op
1587
                    grad_op_dist_attr.set_output_dims_mapping(
1588 1589
                        output_name, ref_dims_mapping
                    )
1590

1591 1592
                grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx
1593
                self._dist_context.set_op_dist_attr_for_program(
1594 1595
                    grad_op, grad_op_dist_attr
                )
1596

1597
            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
1598
            else:
1599 1600 1601
                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1602 1603 1604 1605 1606
                    assert (
                        output_name in grad_var_to_var
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1607 1608
                    ref_fwd_var_name = grad_var_to_var[output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
1609 1610 1611 1612 1613
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1614 1615 1616 1617 1618 1619 1620 1621 1622
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh

                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1623 1624
                        output_var, tensor_dist_attr
                    )
1625

1626 1627 1628 1629 1630
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1631 1632
                            var_name, ref_fwd_dims_mapping
                        )
1633
                    grad_op_dist_attr.set_output_dims_mapping(
1634 1635
                        output_name, ref_fwd_dims_mapping
                    )
1636 1637
                    grad_op_dist_attr.impl_type = "default"
                    grad_op_dist_attr.impl_idx = 0
1638

1639
                elif grad_op.type == 'fill_any_like':
1640 1641
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1642 1643 1644 1645 1646
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1647 1648 1649 1650 1651 1652 1653 1654 1655
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1656 1657
                        output_var, tensor_dist_attr
                    )
1658 1659 1660
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1661
                    grad_op_dist_attr.set_input_dims_mapping(
1662 1663
                        ref_var_name, ref_dims_mapping
                    )
1664
                    grad_op_dist_attr.set_output_dims_mapping(
1665 1666
                        output_var_name, ref_dims_mapping
                    )
1667 1668

                else:
1669 1670 1671
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1672 1673

                self._dist_context.set_op_dist_attr_for_program(
1674 1675
                    grad_op, grad_op_dist_attr
                )
1676

1677
    def complete_update_annotation(self, serial_main_program):
1678
        """Complete the annotation of vars and ops in the update phase for parallel program."""
1679 1680
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1681 1682 1683 1684
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1685
        world_ranks = get_world_process_group().ranks
1686 1687

        # Notice: serial_main_program is actually a dist_main_program of current rank,
1688
        # and must be passed into this function.
1689 1690
        # TODO: We should fix this behavior.

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
1701
                if is_gradient_clip_op(op):
1702
                    if op.type in [
1703 1704 1705 1706 1707
                        "sum",
                        "sqrt",
                        "fill_constant",
                        "elementwise_max",
                        "elementwise_div",
1708 1709 1710 1711 1712 1713
                    ]:
                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = world_ranks
                        for in_name in op.input_arg_names:
                            in_var = vars[in_name]
                            in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1714 1715
                                in_var
                            )
1716
                            op_dist_attr.set_input_dist_attr(
1717 1718
                                in_name, in_dist_attr
                            )
1719 1720 1721 1722 1723 1724 1725 1726
                        for out_name in op.output_arg_names:
                            out_var = vars[out_name]
                            out_dist_attr = TensorDistributedAttribute()
                            out_dist_attr.process_mesh = world_ranks
                            out_dist_attr.dims_mapping = [
                                -1 for _ in range(len(out_var.shape))
                            ]
                            self._dist_context.set_tensor_dist_attr_for_program(
1727 1728
                                out_var, out_dist_attr
                            )
1729
                            op_dist_attr.set_output_dist_attr(
1730 1731
                                out_name, out_dist_attr
                            )
1732 1733
                    else:
                        in_var = vars[op.input("X")[0]]
1734 1735 1736 1737 1738
                        in_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_program(
                                in_var
                            )
                        )
1739 1740 1741 1742
                        assert in_dist_attr is not None
                        ref_process_mesh = in_dist_attr.process_mesh
                        ref_dims_mapping = in_dist_attr.dims_mapping

1743 1744 1745 1746
                        if (
                            op.type == "cast"
                            and ops[idx + 1].type == "elementwise_mul"
                        ):
1747 1748
                            ref_var = vars[ops[idx + 1].input("X")[0]]
                            ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1749 1750
                                ref_var
                            )
1751 1752 1753 1754 1755 1756 1757 1758 1759
                            assert ref_dist_attr is not None
                            ref_process_mesh = ref_dist_attr.process_mesh

                        out_var = vars[op.output("Out")[0]]
                        out_dist_attr = TensorDistributedAttribute()
                        out_dist_attr.process_mesh = ref_process_mesh
                        if out_var.shape == in_var.shape:
                            out_dist_attr.dims_mapping = ref_dims_mapping
                        else:
1760 1761 1762 1763
                            assert (
                                len(out_var.shape) == 1
                                and out_var.shape[0] == 1
                            )
1764 1765
                            out_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1766 1767
                            out_var, out_dist_attr
                        )
1768 1769 1770 1771

                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = ref_process_mesh
                        op_dist_attr.set_input_dist_attr(
1772 1773
                            in_var.name, in_dist_attr
                        )
1774
                        op_dist_attr.set_output_dist_attr(
1775 1776
                            out_var.name, out_dist_attr
                        )
Z
zhaoyingli 已提交
1777 1778

                    self._dist_context.set_op_dist_attr_for_program(
1779 1780
                        op, op_dist_attr
                    )
1781 1782

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
1783 1784 1785 1786 1787 1788
                    assert (
                        len(op.input("Param")) == 1
                    ), "Only support one-to-one now."
                    assert (
                        len(op.input("Grad")) == 1
                    ), "Only support one-to-one now."
1789 1790 1791
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

1792 1793 1794 1795 1796
                    param_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        )
                    )
1797
                    assert param_dist_attr is not None
1798 1799 1800 1801 1802
                    ref_process_mesh = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).process_mesh
                    )
1803
                    assert ref_process_mesh is not None
1804 1805 1806 1807 1808
                    ref_dims_mapping = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).dims_mapping
                    )
1809 1810 1811
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
1812 1813 1814 1815 1816 1817
                    op_dist_attr.set_input_dims_mapping(
                        grad_var.name, ref_dims_mapping
                    )
                    op_dist_attr.set_input_dims_mapping(
                        param.name, ref_dims_mapping
                    )
1818
                    op_dist_attr.set_output_dims_mapping(
1819 1820
                        param.name, ref_dims_mapping
                    )
1821 1822
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
1823
                    op_dist_attr.set_output_dims_mapping(
1824 1825
                        learning_var.name, [-1]
                    )
1826 1827 1828 1829

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
1830
                        var_dist_attr.process_mesh = world_ranks
1831 1832
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1833 1834
                            learning_var, var_dist_attr
                        )
1835 1836 1837 1838

                    for input_name in op.desc.input_names():

                        if input_name in [
1839 1840 1841 1842 1843 1844 1845
                            'Param',
                            'Grad',
                            'LearningRate',
                            "SkipUpdate",
                            "Beta1Tensor",
                            "Beta2Tensor",
                            "EpsilonTensor",
1846 1847
                        ]:
                            continue
1848 1849
                        if len(op.desc.input(input_name)) == 0:
                            continue
1850 1851 1852 1853 1854 1855 1856

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
1857
                            op_dist_attr.set_input_dims_mapping(
1858 1859
                                input_var.name, [-1]
                            )
1860
                            op_dist_attr.set_output_dims_mapping(
1861 1862
                                input_var.name, [-1]
                            )
1863 1864 1865
                        else:
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
1866 1867
                                input_var.name, ref_dims_mapping
                            )
1868
                            op_dist_attr.set_output_dims_mapping(
1869 1870
                                input_var.name, ref_dims_mapping
                            )
1871 1872 1873

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
1874 1875
                            input_var, input_var_attr
                        )
1876 1877

                    self._dist_context.set_op_dist_attr_for_program(
1878 1879
                        op, op_dist_attr
                    )
1880
                    continue
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

    def complete_prim_annotation(self, serial_main_program=None):
        """
        fill default data parallel annotation for program with primitive operators.

        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
Z
zhaoyingli 已提交
1894
            self._dist_context._serial_main_program = serial_main_program
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

        self._dist_context._is_initialized = True
        self._dist_context._init_dist_attr_for_program()
        self._init_global_mesh_for_program()
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()

    def _init_global_mesh_for_program(self):
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1906 1907 1908 1909
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1910 1911 1912 1913 1914 1915
        world_ranks = get_world_process_group().ranks

        for block in self._dist_context._serial_main_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
1916 1917
                    tensor
                )
1918 1919 1920 1921 1922 1923 1924 1925 1926
                assert dist_tensor is not None
                dist_tensor.dist_attr.process_mesh = world_ranks
            for op in block.ops:
                # Copy the distributed operators in the default context
                dist_op = self._dist_context.get_dist_op_for_program(op)
                assert dist_op is not None
                dist_op.dist_attr.process_mesh = world_ranks

                # Find the most compatible implemenetations from the distributed operator
1927
                op_dist_impls = find_compatible_distributed_operator_impls(
1928 1929
                    dist_op, fwd=True
                )
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
                if op_dist_impls is not None:
                    backup_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
                    for op_dist_impl in op_dist_impls:
                        dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                        if op_dist_impl.is_auto_compatible(dist_op):
                            if op_dist_impl.type == "elementwise":
                                dist_op.dist_attr.impl_type = "default"
                            else:
                                dist_op.dist_attr.impl_type = op_dist_impl.type
                            # op_dist_attr.impl_type = op_dist_impl.type
                            dist_op.dist_attr.impl_idx = op_dist_impl.idx
                            break
                        else:
                            dist_op.dist_attr = backup_op_dist_attr