completion.py 84.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17 18 19

from paddle.fluid import core

20
from .utils import is_naive_data_parallel, get_logger
21
from .utils import is_gradient_clip_op, __not_shape_var_type__
22
from .operators import find_compatible_distributed_operator_impls
23
from .dist_context import _node_id
24 25
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
26
from .process_mesh import ProcessMesh
27
from .process_group import get_world_process_group
28
from paddle.distributed.fleet.meta_optimizers.common import OpRole
29 30


31 32 33 34
def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    def _compute_compatible_process_mesh_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.processes == pm2.processes:
            if len(pm1.topology) >= len(pm2.topology):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.processes)
        process_set2 = set(pm2.processes)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_two(
59 60
            compatible_result, process_mesh
        )
61 62 63 64 65 66 67 68 69
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
70

71 72 73 74 75 76 77 78 79 80 81 82
    def _compute_compatible_dim_mapping_two(dm1, dm2):
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
        compatible, compatible_result = _compute_compatible_dim_mapping_two(
83 84
            compatible_result, mapping
        )
85 86 87 88 89 90 91
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
92
    Each of dims mapping is also a list.
93
    """
94 95 96 97 98 99 100 101 102 103 104
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
105 106
            list(dim_mappings)
        )
107 108 109 110 111 112
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


113 114 115 116 117 118 119 120 121 122 123 124 125 126
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
        process_set1 = set(pm1.processes)
    if pm2 is not None:
        process_set2 = set(pm2.processes)
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


127 128 129 130 131
def _validate_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(
132 133
            process_mesh.topology
        ):
134 135 136 137 138 139 140
            return False
    for i in range(len(process_mesh.topology)):
        if dims_mapping.count(i) > 1:
            return False
    return True


141 142 143 144
class Completer:
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context
145
        self._has_prepared = False
146
        self._logger = get_logger(logging.INFO, "Completer")
147 148 149 150 151 152 153

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
154 155 156 157 158
        if (
            tensor_desc.type() == core.VarDesc.VarType.READER
            or tensor_desc.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            or tensor_desc.type == core.VarDesc.VarType.STEP_SCOPES
        ):
159 160
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
161 162
            tensor_node
        )
163 164 165 166 167 168 169 170
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
171 172 173 174 175 176
                    if (
                        pred_op_node.op().type() == "create_py_reader"
                        or pred_op_node.op().type()
                        == "create_double_buffer_reader"
                        or pred_op_node.op().type() == "read"
                    ):
177
                        continue
178 179 180 181 182 183 184 185 186
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            pred_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
187
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
188 189
                            tensor_desc.name()
                        )
190 191 192
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
193 194 195 196 197
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
198
                return False
199 200 201
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
202
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
203 204
                changed = True
        else:
205 206 207
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
208 209 210 211 212 213
                    if (
                        succ_op_node.op().type() == "create_py_reader"
                        or succ_op_node.op().type()
                        == "create_double_buffer_reader"
                        or succ_op_node.op().type() == "read"
                    ):
214
                        continue
215 216 217 218 219 220 221 222 223
                    op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_graph(
                            succ_op_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
224
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
225 226
                            tensor_desc.name()
                        )
227 228 229
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
230 231 232 233 234
                dims_mapping_list
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, tensor_dist_attr.process_mesh
            ):
235
                return False
236 237 238
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != tensor_dims_mapping
            ):
239
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
240
                changed = True
241
        return changed
242

243 244 245 246 247 248
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
249 250 251 252 253 254
        if (
            op_desc.type() == "create_py_reader"
            or op_desc.type() == "create_double_buffer_reader"
            or op_desc.type() == "while"
            or op_desc.type() == "read"
        ):
255 256 257
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
258
        original_op_dist_attr = copy.deepcopy(op_dist_attr)
259 260
        if fwd:
            for tensor_node in op_node.inputs:
261
                if tensor_node.is_var() and tensor_node.var() is not None:
262 263 264 265
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
266 267
                        tensor_desc.name()
                    ):
268
                        continue
269 270 271 272 273 274 275 276 277
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
278 279
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
280 281 282 283 284 285 286
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
287
                        if not _validate_dims_mapping(
288 289
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
290
                            continue
291 292 293
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
294
                            op_dist_attr.set_input_dims_mapping(
295 296
                                tensor_desc.name(), compatible_dims_mapping
                            )
297 298
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
299 300 301
            op_dist_impls = find_compatible_distributed_operator_impls(
                dist_op, fwd=True
            )
302 303 304 305 306 307 308 309
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
310 311 312 313
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
314 315 316 317 318 319 320 321
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
322
                    else:
323 324 325 326 327 328 329 330
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
331
        else:
332
            for tensor_node in op_node.outputs:
333
                if tensor_node.is_var() and tensor_node.var() is not None:
334 335 336 337
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
338 339
                        tensor_desc.name()
                    ):
340
                        continue
341 342 343 344 345 346 347 348 349
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
350 351
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
352 353 354 355 356 357 358
                            tensor_desc.name()
                        )
                        compatible_dims_mapping = (
                            compute_compatible_dims_mapping(
                                [op_dims_mapping, tensor_dims_mapping]
                            )
                        )
359
                        if not _validate_dims_mapping(
360 361
                            compatible_dims_mapping, op_dist_attr.process_mesh
                        ):
362
                            continue
363 364 365
                        if (compatible_dims_mapping is not None) and (
                            compatible_dims_mapping != op_dims_mapping
                        ):
366
                            op_dist_attr.set_output_dims_mapping(
367 368
                                tensor_desc.name(), compatible_dims_mapping
                            )
369 370
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
371
            op_dist_impls = find_compatible_distributed_operator_impls(
372 373
                dist_op, fwd=False
            )
374 375 376 377 378 379 380 381
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
382 383 384 385
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
386 387 388 389 390 391 392 393
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
394
                    else:
395 396 397 398 399 400 401 402
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
403
        return changed
404

405 406 407 408
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
409 410
                parent_node
            )
411
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
412 413 414 415 416 417
                child_node
            )
            if (
                parent_node_dist_attr.process_mesh
                != child_node_dist_attr.process_mesh
            ):
418
                continue
419 420 421
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
422 423 424 425 426
                [parent_node_dims_mapping, child_node_dims_mapping]
            )
            if not _validate_dims_mapping(
                compatible_dims_mapping, parent_node_dist_attr.process_mesh
            ):
427
                return False
428 429 430
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != parent_node_dims_mapping
            ):
431 432
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
433 434 435
            if (compatible_dims_mapping is not None) and (
                compatible_dims_mapping != child_node_dims_mapping
            ):
436
                child_node_dist_attr.dims_mapping = compatible_dims_mapping
437 438
                changed = True
        return changed
439

440 441 442
    def _update_dims_mapping_for_special(self):
        # Set the dims_mapping of a tensor to the dims_mapping inside the op which produces it
        op_nodes = self._dist_context._serial_ordered_op_nodes
443 444
        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
445 446 447
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
448
        ]
449
        for op_node in op_nodes:
450 451 452 453
            if (
                op_node.op() is not None
                and op_node.op().type() in related_reader_ops
            ):
454
                continue
455 456 457 458 459 460
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() and tensor_node.var() is not None:
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
461 462 463 464 465 466 467 468 469
                    tensor_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node
                        )
                    )
                    if (
                        op_dist_attr.process_mesh
                        == tensor_dist_attr.process_mesh
                    ):
470
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
471 472
                            tensor_desc.name()
                        )
473 474
                        tensor_dist_attr.dims_mapping = op_dims_mapping

475 476 477 478
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
479
            changed = False
480
            for is_fwd in [True, False]:
481 482 483 484 485
                all_nodes = (
                    self._dist_context.serial_ordered_nodes
                    if is_fwd
                    else reversed(self._dist_context.serial_ordered_nodes)
                )
486 487 488
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
489 490
                            node, fwd=is_fwd
                        )
491 492 493 494
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
495 496
                            node, fwd=is_fwd
                        )
497 498
                        if op_changed:
                            changed = True
499 500 501
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
502
            if changed:
503
                reach_fix_point = False
504
            else:
505
                reach_fix_point = True
506
        # NOTE: this will be removed after changing the reshard rule
507
        self._update_dims_mapping_for_special()
508

509 510 511 512 513 514
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
515 516
                nearest_op_node
            )
517 518
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
519 520 521 522 523 524
                [process_mesh, nearest_process_mesh]
            )
            if (
                compatible_process_mesh is not None
                and process_mesh != compatible_process_mesh
            ):
525 526 527 528 529 530 531
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
532 533 534 535 536
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
537 538 539 540 541 542
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
543 544 545 546 547 548
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
549
                    tensor_dist_attr.process_mesh = compatible_process_mesh
550
                # Set the process mesh of the op node's outputs
551 552
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
553 554 555 556 557
                tensor_dist_attr = (
                    self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node
                    )
                )
558 559 560
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
561 562 563 564 565 566
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and tensor_dist_attr.process_mesh != compatible_process_mesh
                ):
567 568 569 570 571
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
572 573 574 575 576
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
577 578 579
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
580 581 582 583 584 585
            for node in nodes[idx + 1 :]:
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == var_name
                ):
586 587 588 589 590 591 592 593 594 595 596 597 598 599
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
600 601
                neighbors = cur.inputs + cur.outputs
                for node in neighbors:
602
                    if node.is_var() and node.var() is not None:
603 604 605 606
                        if (
                            node.var().type() != core.VarDesc.VarType.READER
                            and len(node.var().shape()) == 1
                        ):
607 608 609 610
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
611 612 613 614 615
                        if (
                            node.op().type() == "create_py_reader"
                            or node.op().type() == "create_double_buffer_reader"
                            or node.op().type() == "read"
                        ):
616 617
                            flag = False
                        for tensor_node in node.inputs:
618 619 620 621 622 623 624 625 626
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
                                    in __not_shape_var_type__
                                    or len(tensor_node.var().shape()) != 1
                                ):
627 628 629
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
630 631 632 633 634 635 636 637 638
                            if (
                                tensor_node.is_var()
                                and tensor_node.var() is not None
                            ):
                                if (
                                    tensor_node.var().type()
                                    in __not_shape_var_type__
                                    or len(tensor_node.var().shape()) != 1
                                ):
639 640 641 642 643 644 645 646
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
        def _make_dims_mapping_replicate(dist_attr):
            if isinstance(dist_attr, TensorDistributedAttribute):
                for i, _ in enumerate(dist_attr.dims_mapping):
                    dist_attr.dims_mapping[i] = -1
            if isinstance(dist_attr, OperatorDistributedAttribute):
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
663 664 665
                    dist_attr.set_output_dims_mapping(
                        arg_name, new_dims_mapping
                    )
666

667 668 669
        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
670
            sub_graph = self._dist_context.serial_graph.get_sub_graph(
671 672
                sub_graph_id
            )
673 674
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
675 676
                while_op_node
            )
677 678 679 680 681
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
682 683 684
                if (node.is_var() and node.var() is not None) or (
                    node.is_op() and node.op() is not None
                ):
685 686
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
687 688
                        merged_process_mesh, dist_attr.process_mesh
                    )
689
            while_op_dist_attr.process_mesh = merged_process_mesh
690
            _make_dims_mapping_replicate(while_op_dist_attr)
691 692 693 694 695 696 697

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
698 699 700 701 702
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                ):
703 704 705 706 707
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
708 709
                _find_nodes_related_to_cond(cond_tensor_node)
            )
710 711 712 713

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
714 715 716 717 718 719
                if (
                    node.is_var()
                    and node.var() is not None
                    and node.var().name() == cond_tensor_name
                    and len(node.outputs) == 0
                ):
720 721 722 723
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
724 725
                _find_nodes_related_to_cond(cond_tensor_node)
            )
726 727 728 729
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
730 731 732 733 734
                if (
                    output_node.is_var()
                    and output_node.var() is not None
                    and output_node.var().name() == stepscopes_tensor_name
                ):
735 736 737 738 739
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
740 741
                    node
                )
742
                tensor_dist_attr.process_mesh = merged_process_mesh
743
                _make_dims_mapping_replicate(tensor_dist_attr)
744 745 746

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
747 748 749 750
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_inputs_dist_attrs.items():
751
                nearest_tensor_node = _find_nearest_tensor_node_before(
752 753 754 755 756 757 758 759 760 761 762 763
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
764 765 766

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
767 768 769 770
            for (
                tensor_name,
                tensor_dist_attr,
            ) in while_op_outputs_dist_attrs.items():
771
                nearest_tensor_node = _find_nearest_tensor_node_before(
772 773 774 775
                    self._dist_context.serial_ordered_nodes,
                    while_op_node_idx,
                    tensor_name,
                )
776 777 778
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
779 780 781 782 783 784 785 786 787 788 789
                        while_op_node_idx,
                        tensor_name,
                    )
                nearest_tensor_dist_attr = (
                    self._dist_context.get_dist_attr_for_graph(
                        nearest_tensor_node
                    )
                )
                tensor_dist_attr.process_mesh = (
                    nearest_tensor_dist_attr.process_mesh
                )
790 791 792 793 794 795

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
796 797
                    array_node
                )
798
                merged_process_mesh = merge_process_mesh_two(
799 800
                    merged_process_mesh, dist_attr.process_mesh
                )
801 802
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
803 804
                    array_node
                )
805
                dist_attr.process_mesh = merged_process_mesh
806 807 808 809 810
                _make_dims_mapping_replicate(dist_attr)

    def _update_process_mesh_between_graphs(self):
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
811 812
                parent_node
            )
813
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
814 815 816
                child_node
            )
            parent_node_dist_attr.process_mesh = (
817
                child_node_dist_attr.process_mesh
818 819 820 821 822 823 824 825 826 827 828 829
            )
            compatible_process_mesh = compute_compatible_process_mesh(
                [
                    parent_node_dist_attr.process_mesh,
                    child_node_dist_attr.process_mesh,
                ]
            )
            if (
                compatible_process_mesh is not None
                and parent_node_dist_attr.process_mesh
                != compatible_process_mesh
            ):
830
                parent_node_dist_attr.process_mesh = compatible_process_mesh
831 832 833 834
            if (
                compatible_process_mesh is not None
                and child_node_dist_attr.process_mesh != compatible_process_mesh
            ):
835
                child_node_dist_attr.process_mesh = compatible_process_mesh
836 837 838 839 840 841 842

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
843 844 845
            tensor_dist_attr = (
                self._dist_context.get_tensor_dist_attr_for_graph(tensor_node)
            )
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
863 864
                first_op_node
            )
865
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
866 867
                "process_mesh"
            ):
868
                compatible_process_mesh = compute_compatible_process_mesh(
869 870 871 872 873 874
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh]
                )
                if (
                    compatible_process_mesh is not None
                    and op_dist_attr.process_mesh != compatible_process_mesh
                ):
875 876 877 878 879 880 881
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
882 883 884 885
            if (
                op_dist_attr.process_mesh is not None
                and idx_of_first_op_node_has_process_mesh == -1
            ):
886 887 888 889 890 891
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
892
        for idx, op_node in enumerate(
893 894
            ordered_op_nodes[idx_of_first_op_node_has_process_mesh + 1 :]
        ):
895
            original_idx = idx_of_first_op_node_has_process_mesh + idx + 1
896 897
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
898 899
                nearest_op_node
            )
900 901 902 903 904
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
905 906
            idx_of_first_op_node_has_process_mesh
        ]
907 908 909 910 911 912
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

913
        # Step 4: adjust the process meshes between graphs
914 915
        self._update_process_mesh_between_graphs()

916
    def _prepare(self):
917 918
        if self._has_prepared:
            return
919 920 921 922 923 924 925 926 927 928 929 930 931
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
932 933
                    # Add the array input node
                    self._array_nodes[array_var_name].append(node.inputs[0])
934 935 936 937 938 939 940 941 942
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
943 944 945 946 947 948 949
                        if (
                            before_node.is_var()
                            and before_node.var() is not None
                            and before_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and before_node.var().name() == node.var().name()
                        ):
950
                            self._node_pairs_between_graphs.append(
951 952 953 954 955 956 957 958 959 960
                                (before_node, node)
                            )
                    for after_node in all_nodes[idx + 1 :]:
                        if (
                            after_node.is_var()
                            and after_node.var() is not None
                            and after_node.node.graph_id()
                            == node.node.graph_id() - 1
                            and after_node.var().name() == node.var().name()
                        ):
961
                            self._node_pairs_between_graphs.append(
962 963
                                (after_node, node)
                            )
964
        self._has_prepared = True
965

966
    def complete_forward_annotation(self, serial_main_program=None):
967
        """Complete annotation for the partial annotated serial_main_program.
968 969
        Arguments:
            serial_main_program: partial annotated serial_main_program.
970
        Returns:e
971 972 973
            serial_main_program: completed annotated serial_main_program.
        """

974 975 976
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
977
            self._dist_context._serial_main_program = serial_main_program
978

979
        if not is_naive_data_parallel(self._dist_context):
980 981 982 983 984 985 986
            self._dist_context.initialize(with_graph=True)
            self._prepare()
            self._update_process_mesh()
            self._update_dims_mapping()
            # Copy the corresponding distributed attribute from graph to serial_main_program
            self._dist_context.copy_dist_attr_from_graph_to_program()
        else:
987
            self._logger.info("Default data parallel will be set.")
988 989 990 991
            self._dist_context.initialize(with_graph=False)
            # A fast and special completion for data parallel
            self._update_dist_attr_for_dp()

992
        # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient
993
        self._complete_high_order_grad_annotation(serial_main_program)
994 995 996 997 998
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()
        return serial_main_program

999 1000 1001 1002
    def _update_dist_attr_for_dp(self):
        # TODO: we must ensure the world process group contains all ranks
        ranks = get_world_process_group().ranks
        process_mesh = ProcessMesh(ranks)
1003 1004 1005 1006 1007 1008 1009

        dist_tensors = self._dist_context._dist_tensors_for_program
        for dist_tensor in dist_tensors.values():
            dist_tensor.dist_attr.process_mesh = process_mesh

        dist_ops = self._dist_context._dist_ops_for_program
        for dist_op in dist_ops.values():
1010 1011 1012 1013
            serial_op = dist_op.serial_op
            op_dist_attr = dist_op.dist_attr
            op_dist_attr.process_mesh = process_mesh
            original_op_dist_attr = copy.deepcopy(op_dist_attr)
1014

1015 1016 1017
            for arg_name in serial_op.input_arg_names:
                serial_tensor = dist_op.get_serial_input(arg_name)
                if not serial_tensor.is_parameter:
1018 1019 1020
                    dist_tensor = (
                        self._dist_context.get_dist_tensor_for_program(
                            serial_tensor
1021 1022
                        )
                    )
1023 1024 1025 1026 1027 1028
                    op_dist_attr = dist_op.dist_attr
                    op_dist_attr.process_mesh = (
                        dist_tensor.dist_attr.process_mesh
                    )
                    op_dist_attr.set_input_dims_mapping(
                        arg_name, dist_tensor.dist_attr.dims_mapping
1029
                    )
1030 1031

            op_dist_impls = find_compatible_distributed_operator_impls(
1032
                dist_op, fwd=True
1033
            )
1034 1035 1036 1037 1038
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                for op_dist_impl in op_dist_impls:
                    op_dist_impl.update_dims_mapping(dist_op)
1039 1040 1041 1042
                    if (
                        op_dist_impl.is_auto_compatible(dist_op)
                        and dist_op.validate_dist_attr()
                    ):
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
                        op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
                    else:
                        dist_op.dist_attr = backup_op_dist_attr
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
            else:
                dist_op.dist_attr = original_op_dist_attr

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
            for arg_name in serial_op.output_arg_names:
                op_dist_attr = dist_op.dist_attr
                serial_tensor = dist_op.get_serial_output(arg_name)
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
                    serial_tensor
                )
                dist_tensor.dist_attr.dims_mapping = (
                    op_dist_attr.get_output_dims_mapping(arg_name)
                )

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    def _complete_tensor_dist_attr_by_op(self, serial_main_program=None):
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

        self._dist_context.initialize()

        self._prepare()

        has_set_dist_attr = set()

        all_nodes = self._dist_context.serial_ordered_nodes
        for node in all_nodes:
            if node.is_op():
                if node.op().type() in ["while"]:
                    continue
                dist_op = self._dist_context.get_dist_op_for_graph(node)
                op_dist_attr = dist_op.dist_attr
                for tensor_node in node.inputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        # Skip the non-leaf var node
                        if len(tensor_node.inputs) != 0:
                            continue
                        tensor_desc = tensor_node.var()
                        tensor_name = tensor_desc.name()
                        tensor = dist_op.get_serial_input(tensor_name)
                        # Use the first op to set the tensor dist attr
                        if tensor_name in has_set_dist_attr:
                            continue
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_input_dims_mapping(tensor_name)
                            if tensor.is_parameter
                            else [-1 for i in tensor_desc.shape()]
                        )
1107 1108 1109 1110 1111 1112
                        has_set_dist_attr.add(tensor_name)
                for tensor_node in node.outputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        tensor_name = tensor_node.var().name()
                        if tensor_name in has_set_dist_attr:
                            continue
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
                        tensor_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_graph(
                                tensor_node
                            )
                        )
                        tensor_dist_attr.process_mesh = (
                            op_dist_attr.process_mesh
                        )
                        tensor_dist_attr.dims_mapping = (
                            op_dist_attr.get_output_dims_mapping(tensor_name)
                        )
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
                        has_set_dist_attr.add(tensor_name)

        self._update_process_mesh_for_specials()

        self._update_process_mesh_between_graphs()

        self._update_dims_mapping_for_special()

        self._update_dims_mapping_between_graphs()

        # Copy the corresponding distributed attribute from graph to serial_main_program
        self._dist_context.copy_dist_attr_from_graph_to_program()

        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

1142
    def _complete_high_order_grad_annotation(self, serial_main_program=None):
1143
        """
1144
        NOTE:
1145 1146 1147 1148
            [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient.
            This function is temporary to support high order gradient, and will be removed in the future.
        """

1149 1150 1151 1152 1153
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

1154 1155 1156 1157 1158 1159 1160
        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_op_by_id(ops, id):
            for op in ops:
1161
                if op.desc.original_id() == id:
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
                    return op
            return None

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
        grad_var_to_var = dist_op_context.grad_var_to_var

        appended_grad_times = 0
        for idx in range(0, len(ops)):
            op = ops[idx]
            if int(op.attr('op_role')) == int(
1174 1175
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1176 1177 1178
                continue

            if int(op.attr('op_role')) == int(
1179 1180 1181 1182
                core.op_proto_and_checker_maker.OpRole.Backward
            ) and int(ops[idx - 1].attr('op_role')) == int(
                core.op_proto_and_checker_maker.OpRole.Forward
            ):
1183 1184
                appended_grad_times += 1

1185
            if int(op.attr('op_role')) == int(
1186 1187 1188
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1189 1190 1191
                assert op.type == "fill_constant"
                break

1192 1193 1194
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1195 1196 1197 1198
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1199
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1200
                forward_op = _get_op_by_id(
1201 1202 1203 1204 1205
                    ops,
                    dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()
                    ],
                )
1206 1207
                assert forward_op is not None

1208 1209 1210
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1211 1212 1213 1214 1215
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh

                for input_name in grad_op.input_arg_names:
1216 1217 1218 1219
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1220 1221
                        if input_name in grad_var_to_var[appended_grad_times]:
                            fwd_name = grad_var_to_var[appended_grad_times][
1222 1223 1224 1225 1226 1227 1228
                                input_name
                            ]
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1229 1230 1231
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1232 1233
                                input_var
                            ).dims_mapping
1234 1235
                    else:
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
1236 1237 1238 1239 1240
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1241
                        else:
1242 1243 1244 1245 1246 1247 1248 1249
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1250
                    grad_op_dist_attr.set_input_dims_mapping(
1251 1252
                        input_name, ref_dims_mapping
                    )
1253 1254 1255 1256 1257

                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var[appended_grad_times]
                    fwd_name = grad_var_to_var[appended_grad_times][output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1258 1259
                        fwd_name
                    )
1260 1261 1262 1263 1264 1265
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1266 1267
                        output_var, tensor_dist_attr
                    )
1268
                    # op
1269
                    grad_op_dist_attr.set_output_dims_mapping(
1270 1271
                        output_name, ref_dims_mapping
                    )
1272 1273

                self._dist_context.set_op_dist_attr_for_program(
1274 1275
                    grad_op, grad_op_dist_attr
                )
1276 1277 1278 1279 1280 1281 1282

            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
            else:

                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1283 1284 1285 1286 1287
                    assert (
                        output_name in grad_var_to_var[appended_grad_times]
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1288
                    ref_fwd_var_name = grad_var_to_var[appended_grad_times][
1289 1290
                        output_name
                    ]
1291
                    ref_fwd_var = vars[ref_fwd_var_name]
1292 1293 1294 1295 1296
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1297 1298 1299 1300 1301 1302 1303 1304
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1305 1306
                        output_var, tensor_dist_attr
                    )
1307 1308 1309 1310 1311
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1312 1313
                            var_name, ref_fwd_dims_mapping
                        )
1314
                    grad_op_dist_attr.set_output_dims_mapping(
1315 1316
                        output_name, ref_fwd_dims_mapping
                    )
1317

1318
                elif grad_op.type == 'fill_any_like':
1319 1320
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1321 1322 1323 1324 1325
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1326 1327 1328 1329 1330 1331 1332 1333 1334
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1335 1336
                        output_var, tensor_dist_attr
                    )
1337 1338 1339
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1340
                    grad_op_dist_attr.set_input_dims_mapping(
1341 1342
                        ref_var_name, ref_dims_mapping
                    )
1343
                    grad_op_dist_attr.set_output_dims_mapping(
1344 1345
                        output_var_name, ref_dims_mapping
                    )
1346 1347 1348 1349 1350

                elif grad_op.type in ['shape', 'fill_constant']:
                    continue

                else:
1351 1352 1353
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1354 1355

                self._dist_context.set_op_dist_attr_for_program(
1356 1357
                    grad_op, grad_op_dist_attr
                )
1358

1359
    def complete_backward_annotation(self, serial_main_program=None):
1360
        """Complete the annotation of vars and ops in the backward phase for parallel program."""
1361

1362 1363 1364
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
1365
            self._dist_context._serial_main_program = serial_main_program
1366 1367 1368 1369 1370 1371 1372 1373

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
1374 1375 1376
                grad_var_name
            ), "[{}] is not a grad varnme.".format(grad_var_name)
            return grad_var_name[: grad_var_name.find("@GRAD")]
1377 1378 1379

        def _get_op_by_id(ops, id):
            for op in ops:
1380
                if op.desc.original_id() == id:
1381 1382 1383 1384 1385 1386
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
1387 1388 1389
                int(core.op_proto_and_checker_maker.OpRole.Backward)
                | int(core.op_proto_and_checker_maker.OpRole.Loss)
            ):
1390 1391 1392 1393
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

1394 1395 1396
        assert (
            first_backward_op_idx >= 0
        ), "No backward procedure found in this program."
1397 1398 1399 1400

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
1401 1402 1403
        grad_var_to_var = dist_op_context.grad_var_to_var[
            len(dist_op_context.grad_var_to_var)
        ]
1404 1405 1406 1407 1408 1409

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
                assert (
                    len(ops[idx].input_arg_names) == 0
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names)
                )
                assert (
                    len(ops[idx].output_arg_names) == 1
                ), "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names)
                )
1420 1421 1422

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
1423 1424
                    grad_var.name
                )
1425 1426 1427 1428
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
                process_mesh = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).process_mesh
                )
                dims_mapping = (
                    self._dist_context.get_tensor_dist_attr_for_program(
                        forward_var
                    ).dims_mapping
                )
1439 1440 1441
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
1442 1443
                    grad_var, tensor_dist_attr
                )
1444

1445 1446
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
1447 1448 1449
                op_dist_attr.set_output_dims_mapping(
                    grad_var.name, dims_mapping
                )
1450
                self._dist_context.set_op_dist_attr_for_program(
1451 1452
                    ops[idx], op_dist_attr
                )
1453
                continue
1454

1455 1456 1457
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1458 1459 1460 1461
            if (
                grad_op.desc.original_id()
                in dist_op_context.grad_op_id_to_op_id
            ):
1462
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1463 1464 1465
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[
1466 1467 1468
                        grad_op.desc.original_id()
                    ],
                )
1469 1470
                assert forward_op is not None

J
JZ-LIANG 已提交
1471
                if grad_op.type == "concat" and forward_op.type == "split":
1472 1473 1474 1475 1476
                    forward_op_dist_attr = (
                        self._dist_context.get_op_dist_attr_for_program(
                            forward_op
                        )
                    )
J
JZ-LIANG 已提交
1477 1478
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
1479 1480 1481 1482 1483
                    ref_dims_mapping = (
                        forward_op_dist_attr.get_input_dims_mapping(
                            split_input_var_name
                        )
                    )
J
JZ-LIANG 已提交
1484 1485 1486 1487 1488
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1489 1490
                            input_name, ref_dims_mapping
                        )
J
JZ-LIANG 已提交
1491 1492 1493 1494

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1495
                    self._dist_context.set_tensor_dist_attr_for_program(
1496 1497
                        output_var, output_var_dist_attr
                    )
J
JZ-LIANG 已提交
1498

1499
                    grad_op_dist_attr.set_output_dims_mapping(
1500 1501
                        output_var.name, ref_dims_mapping
                    )
J
JZ-LIANG 已提交
1502
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1503
                    self._dist_context.set_op_dist_attr_for_program(
1504 1505
                        grad_op, grad_op_dist_attr
                    )
1506 1507 1508
                    grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                    grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx

J
JZ-LIANG 已提交
1509 1510
                    continue

1511 1512 1513
                fwd_op_dist_attr = (
                    self._dist_context.get_op_dist_attr_for_program(forward_op)
                )
1514
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
1515
                grad_op_dist_attr = OperatorDistributedAttribute()
1516
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh
1517 1518

                for input_name in grad_op.input_arg_names:
1519 1520 1521 1522
                    if (
                        input_name not in forward_op.input_arg_names
                        and input_name not in forward_op.output_arg_names
                    ):
1523 1524
                        if input_name in grad_var_to_var:
                            fwd_name = grad_var_to_var[input_name]
1525 1526 1527 1528 1529
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    fwd_name
                                )
                            )
1530 1531 1532
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
1533 1534
                                input_var
                            ).dims_mapping
1535
                    else:
1536
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
1537 1538 1539 1540 1541
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_input_dims_mapping(
                                    input_name
                                )
                            )
1542
                        else:
1543 1544 1545 1546 1547 1548 1549 1550
                            ref_dims_mapping = (
                                fwd_op_dist_attr.get_output_dims_mapping(
                                    input_name
                                )
                            )
                    assert (
                        ref_dims_mapping is not None
                    ), "[{}] 's dims mapping is NONE".format(input_name)
1551
                    grad_op_dist_attr.set_input_dims_mapping(
1552 1553
                        input_name, ref_dims_mapping
                    )
1554

1555 1556 1557 1558
                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var
                    fwd_name = grad_var_to_var[output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1559 1560
                        fwd_name
                    )
1561 1562 1563 1564 1565 1566
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
1567 1568
                        output_var, tensor_dist_attr
                    )
1569
                    # op
1570
                    grad_op_dist_attr.set_output_dims_mapping(
1571 1572
                        output_name, ref_dims_mapping
                    )
1573

1574 1575
                grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx
1576
                self._dist_context.set_op_dist_attr_for_program(
1577 1578
                    grad_op, grad_op_dist_attr
                )
1579

1580
            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
1581
            else:
1582 1583 1584
                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
1585 1586 1587 1588 1589
                    assert (
                        output_name in grad_var_to_var
                    ), "sum op's output '{}' has no corresponding var".format(
                        output_name
                    )
1590 1591
                    ref_fwd_var_name = grad_var_to_var[output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
1592 1593 1594 1595 1596
                    ref_fwd_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_fwd_var
                        )
                    )
1597 1598 1599 1600 1601 1602 1603 1604 1605
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh

                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1606 1607
                        output_var, tensor_dist_attr
                    )
1608

1609 1610 1611 1612 1613
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
1614 1615
                            var_name, ref_fwd_dims_mapping
                        )
1616
                    grad_op_dist_attr.set_output_dims_mapping(
1617 1618
                        output_name, ref_fwd_dims_mapping
                    )
1619 1620
                    grad_op_dist_attr.impl_type = "default"
                    grad_op_dist_attr.impl_idx = 0
1621

1622
                elif grad_op.type == 'fill_any_like':
1623 1624
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
1625 1626 1627 1628 1629
                    ref_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            ref_var
                        )
                    )
1630 1631 1632 1633 1634 1635 1636 1637 1638
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
1639 1640
                        output_var, tensor_dist_attr
                    )
1641 1642 1643
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1644
                    grad_op_dist_attr.set_input_dims_mapping(
1645 1646
                        ref_var_name, ref_dims_mapping
                    )
1647
                    grad_op_dist_attr.set_output_dims_mapping(
1648 1649
                        output_var_name, ref_dims_mapping
                    )
1650 1651

                else:
1652 1653 1654
                    raise ValueError(
                        "got unexpect op [{}]".format(str(grad_op.type))
                    )
1655 1656

                self._dist_context.set_op_dist_attr_for_program(
1657 1658
                    grad_op, grad_op_dist_attr
                )
1659

1660
    def complete_update_annotation(self, serial_main_program):
1661
        """Complete the annotation of vars and ops in the update phase for parallel program."""
1662 1663
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1664 1665 1666 1667
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1668
        world_ranks = get_world_process_group().ranks
1669 1670

        # Notice: serial_main_program is actually a dist_main_program of current rank,
1671
        # and must be passed into this function.
1672 1673
        # TODO: We should fix this behavior.

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
1684
                if is_gradient_clip_op(op):
1685
                    if op.type in [
1686 1687 1688 1689 1690
                        "sum",
                        "sqrt",
                        "fill_constant",
                        "elementwise_max",
                        "elementwise_div",
1691 1692 1693 1694 1695 1696
                    ]:
                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = world_ranks
                        for in_name in op.input_arg_names:
                            in_var = vars[in_name]
                            in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1697 1698
                                in_var
                            )
1699
                            op_dist_attr.set_input_dist_attr(
1700 1701
                                in_name, in_dist_attr
                            )
1702 1703 1704 1705 1706 1707 1708 1709
                        for out_name in op.output_arg_names:
                            out_var = vars[out_name]
                            out_dist_attr = TensorDistributedAttribute()
                            out_dist_attr.process_mesh = world_ranks
                            out_dist_attr.dims_mapping = [
                                -1 for _ in range(len(out_var.shape))
                            ]
                            self._dist_context.set_tensor_dist_attr_for_program(
1710 1711
                                out_var, out_dist_attr
                            )
1712
                            op_dist_attr.set_output_dist_attr(
1713 1714
                                out_name, out_dist_attr
                            )
1715 1716
                    else:
                        in_var = vars[op.input("X")[0]]
1717 1718 1719 1720 1721
                        in_dist_attr = (
                            self._dist_context.get_tensor_dist_attr_for_program(
                                in_var
                            )
                        )
1722 1723 1724 1725
                        assert in_dist_attr is not None
                        ref_process_mesh = in_dist_attr.process_mesh
                        ref_dims_mapping = in_dist_attr.dims_mapping

1726 1727 1728 1729
                        if (
                            op.type == "cast"
                            and ops[idx + 1].type == "elementwise_mul"
                        ):
1730 1731
                            ref_var = vars[ops[idx + 1].input("X")[0]]
                            ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
1732 1733
                                ref_var
                            )
1734 1735 1736 1737 1738 1739 1740 1741 1742
                            assert ref_dist_attr is not None
                            ref_process_mesh = ref_dist_attr.process_mesh

                        out_var = vars[op.output("Out")[0]]
                        out_dist_attr = TensorDistributedAttribute()
                        out_dist_attr.process_mesh = ref_process_mesh
                        if out_var.shape == in_var.shape:
                            out_dist_attr.dims_mapping = ref_dims_mapping
                        else:
1743 1744 1745 1746
                            assert (
                                len(out_var.shape) == 1
                                and out_var.shape[0] == 1
                            )
1747 1748
                            out_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1749 1750
                            out_var, out_dist_attr
                        )
1751 1752 1753 1754

                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = ref_process_mesh
                        op_dist_attr.set_input_dist_attr(
1755 1756
                            in_var.name, in_dist_attr
                        )
1757
                        op_dist_attr.set_output_dist_attr(
1758 1759
                            out_var.name, out_dist_attr
                        )
Z
zhaoyingli 已提交
1760 1761

                    self._dist_context.set_op_dist_attr_for_program(
1762 1763
                        op, op_dist_attr
                    )
1764 1765

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
1766 1767 1768 1769 1770 1771
                    assert (
                        len(op.input("Param")) == 1
                    ), "Only support one-to-one now."
                    assert (
                        len(op.input("Grad")) == 1
                    ), "Only support one-to-one now."
1772 1773 1774
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

1775 1776 1777 1778 1779
                    param_dist_attr = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        )
                    )
1780
                    assert param_dist_attr is not None
1781 1782 1783 1784 1785
                    ref_process_mesh = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).process_mesh
                    )
1786
                    assert ref_process_mesh is not None
1787 1788 1789 1790 1791
                    ref_dims_mapping = (
                        self._dist_context.get_tensor_dist_attr_for_program(
                            param
                        ).dims_mapping
                    )
1792 1793 1794
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
1795 1796 1797 1798 1799 1800
                    op_dist_attr.set_input_dims_mapping(
                        grad_var.name, ref_dims_mapping
                    )
                    op_dist_attr.set_input_dims_mapping(
                        param.name, ref_dims_mapping
                    )
1801
                    op_dist_attr.set_output_dims_mapping(
1802 1803
                        param.name, ref_dims_mapping
                    )
1804 1805
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
1806
                    op_dist_attr.set_output_dims_mapping(
1807 1808
                        learning_var.name, [-1]
                    )
1809 1810 1811 1812

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
1813
                        var_dist_attr.process_mesh = world_ranks
1814 1815
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
1816 1817
                            learning_var, var_dist_attr
                        )
1818 1819 1820 1821

                    for input_name in op.desc.input_names():

                        if input_name in [
1822 1823 1824 1825 1826 1827 1828
                            'Param',
                            'Grad',
                            'LearningRate',
                            "SkipUpdate",
                            "Beta1Tensor",
                            "Beta2Tensor",
                            "EpsilonTensor",
1829 1830
                        ]:
                            continue
1831 1832
                        if len(op.desc.input(input_name)) == 0:
                            continue
1833 1834 1835 1836 1837 1838 1839

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
1840
                            op_dist_attr.set_input_dims_mapping(
1841 1842
                                input_var.name, [-1]
                            )
1843
                            op_dist_attr.set_output_dims_mapping(
1844 1845
                                input_var.name, [-1]
                            )
1846 1847 1848
                        else:
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
1849 1850
                                input_var.name, ref_dims_mapping
                            )
1851
                            op_dist_attr.set_output_dims_mapping(
1852 1853
                                input_var.name, ref_dims_mapping
                            )
1854 1855 1856

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
1857 1858
                            input_var, input_var_attr
                        )
1859 1860

                    self._dist_context.set_op_dist_attr_for_program(
1861 1862
                        op, op_dist_attr
                    )
1863
                    continue
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

    def complete_prim_annotation(self, serial_main_program=None):
        """
        fill default data parallel annotation for program with primitive operators.

        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
Z
zhaoyingli 已提交
1877
            self._dist_context._serial_main_program = serial_main_program
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

        self._dist_context._is_initialized = True
        self._dist_context._init_dist_attr_for_program()
        self._init_global_mesh_for_program()
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()

    def _init_global_mesh_for_program(self):
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
1889 1890 1891 1892
        from paddle.distributed.auto_parallel.process_group import (
            get_world_process_group,
        )

1893 1894 1895 1896 1897 1898
        world_ranks = get_world_process_group().ranks

        for block in self._dist_context._serial_main_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
1899 1900
                    tensor
                )
1901 1902 1903 1904 1905 1906 1907 1908 1909
                assert dist_tensor is not None
                dist_tensor.dist_attr.process_mesh = world_ranks
            for op in block.ops:
                # Copy the distributed operators in the default context
                dist_op = self._dist_context.get_dist_op_for_program(op)
                assert dist_op is not None
                dist_op.dist_attr.process_mesh = world_ranks

                # Find the most compatible implemenetations from the distributed operator
1910
                op_dist_impls = find_compatible_distributed_operator_impls(
1911 1912
                    dist_op, fwd=True
                )
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
                if op_dist_impls is not None:
                    backup_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
                    for op_dist_impl in op_dist_impls:
                        dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                        if op_dist_impl.is_auto_compatible(dist_op):
                            if op_dist_impl.type == "elementwise":
                                dist_op.dist_attr.impl_type = "default"
                            else:
                                dist_op.dist_attr.impl_type = op_dist_impl.type
                            # op_dist_attr.impl_type = op_dist_impl.type
                            dist_op.dist_attr.impl_idx = op_dist_impl.idx
                            break
                        else:
                            dist_op.dist_attr = backup_op_dist_attr