attr_test_op.cc 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cstdlib>
#include <iostream>
#include <vector>

#include "paddle/extension.h"

template <typename data_t>
void assign_cpu_kernel(const data_t* x_data,
                       data_t* out_data,
                       int64_t x_numel) {
  for (int i = 0; i < x_numel; ++i) {
    out_data[i] = x_data[i];
  }
}

std::vector<paddle::Tensor> AttrTestForward(
    const paddle::Tensor& x,
    bool bool_attr,
    int int_attr,
    float float_attr,
    int64_t int64_attr,
    std::string str_attr,
    std::vector<int> int_vec_attr,
    std::vector<float> float_vec_attr,
    std::vector<int64_t> int64_vec_attr,
    std::vector<std::string> str_vec_attr) {
  auto out = paddle::Tensor(paddle::PlaceType::kCPU);
  out.reshape(x.shape());

  PD_DISPATCH_FLOATING_TYPES(
      x.type(), "assign_cpu_kernel", ([&] {
        assign_cpu_kernel<data_t>(
            x.data<data_t>(), out.mutable_data<data_t>(), x.size());
      }));

  // Check attrs value
  if (bool_attr != true) {
    throw std::runtime_error("bool_attr value error.");
  }
  if (int_attr != 10) {
    throw std::runtime_error("int_attr value error.");
  }
  if (std::abs(float_attr - 3.14) > 1e-6) {
    throw std::runtime_error("float_attr value error.");
  }
  if (int64_attr != 10000000000) {
    throw std::runtime_error("int64_attr value error.");
  }
  if (str_attr != "StrAttr") {
    throw std::runtime_error("str_attr value error.");
  }

  if (int_vec_attr.size() != 3) {
    throw std::runtime_error("int_vec_attr size error.");
  } else {
    for (auto& value : int_vec_attr) {
      if (value != 10) {
        throw std::runtime_error("int_vec_attr value error.");
      }
    }
  }

  if (float_vec_attr.size() != 3) {
    throw std::runtime_error("float_vec_attr size error.");
  } else {
    for (auto& value : float_vec_attr) {
      if (std::abs(value - 3.14) > 1e-6) {
        throw std::runtime_error("float_vec_attr value error.");
      }
    }
  }

  if (int64_vec_attr.size() != 3) {
    throw std::runtime_error("int64_vec_attr size error.");
  } else {
    for (auto& value : int64_vec_attr) {
      if (value != 10000000000) {
        throw std::runtime_error("int64_vec_attr value error.");
      }
    }
  }

  if (str_vec_attr.size() != 3) {
    throw std::runtime_error("str_vec_attr size error.");
  } else {
    for (auto& value : str_vec_attr) {
      if (value != "StrAttr") {
        throw std::runtime_error("str_vec_attr value error.");
      }
    }
  }

  return {out};
}

// The attrs of backward op must be the subset of attrs of forward op
std::vector<paddle::Tensor> AttrTestBackward(
    const paddle::Tensor& grad_out,
    int int_attr,
    std::vector<float> float_vec_attr,
    std::vector<std::string> str_vec_attr) {
  auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU);
  grad_x.reshape(grad_out.shape());

  PD_DISPATCH_FLOATING_TYPES(grad_out.type(), "assign_cpu_kernel", ([&] {
                               assign_cpu_kernel<data_t>(
                                   grad_out.data<data_t>(),
                                   grad_x.mutable_data<data_t>(),
                                   grad_out.size());
                             }));

  if (int_attr != 10) {
    throw std::runtime_error("int_attr value error.");
  }

  if (float_vec_attr.size() != 3) {
    throw std::runtime_error("float_vec_attr size error.");
  } else {
    for (auto& value : float_vec_attr) {
      if (std::abs(value - 3.14) > 1e-6) {
        throw std::runtime_error("float_vec_attr value error.");
      }
    }
  }

  if (str_vec_attr.size() != 3) {
    throw std::runtime_error("str_vec_attr size error.");
  } else {
    for (auto& value : str_vec_attr) {
      if (value != "StrAttr") {
        throw std::runtime_error("str_vec_attr value error.");
      }
    }
  }

  return {grad_x};
}

std::vector<std::vector<int64_t>> InferShape(std::vector<int64_t> x_shape) {
  return {x_shape};
}

std::vector<paddle::DataType> InferDType(paddle::DataType x_dtype) {
  return {x_dtype};
}

PD_BUILD_OP("attr_test")
    .Inputs({"X"})
    .Outputs({"Out"})
    .Attrs({"bool_attr: bool",
            "int_attr: int",
            "float_attr: float",
            "int64_attr: int64_t",
            "str_attr: std::string",
            "int_vec_attr: std::vector<int>",
            "float_vec_attr: std::vector<float>",
            "int64_vec_attr: std::vector<int64_t>",
            "str_vec_attr: std::vector<std::string>"})
    .SetKernelFn(PD_KERNEL(AttrTestForward))
    .SetInferShapeFn(PD_INFER_SHAPE(InferShape))
    .SetInferDtypeFn(PD_INFER_DTYPE(InferDType))
    .SetBackwardOp("attr_test_grad")
    .Inputs({paddle::Grad("Out")})
    .Outputs({paddle::Grad("X")})
    .Attrs({"int_attr: int",
            "float_vec_attr: std::vector<float>",
            "str_vec_attr: std::vector<std::string>"})
    .SetKernelFn(PD_KERNEL(AttrTestBackward));