// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle/extension.h" template void assign_cpu_kernel(const data_t* x_data, data_t* out_data, int64_t x_numel) { for (int i = 0; i < x_numel; ++i) { out_data[i] = x_data[i]; } } std::vector AttrTestForward( const paddle::Tensor& x, bool bool_attr, int int_attr, float float_attr, int64_t int64_attr, std::string str_attr, std::vector int_vec_attr, std::vector float_vec_attr, std::vector int64_vec_attr, std::vector str_vec_attr) { auto out = paddle::Tensor(paddle::PlaceType::kCPU); out.reshape(x.shape()); PD_DISPATCH_FLOATING_TYPES( x.type(), "assign_cpu_kernel", ([&] { assign_cpu_kernel( x.data(), out.mutable_data(), x.size()); })); // Check attrs value if (bool_attr != true) { throw std::runtime_error("bool_attr value error."); } if (int_attr != 10) { throw std::runtime_error("int_attr value error."); } if (std::abs(float_attr - 3.14) > 1e-6) { throw std::runtime_error("float_attr value error."); } if (int64_attr != 10000000000) { throw std::runtime_error("int64_attr value error."); } if (str_attr != "StrAttr") { throw std::runtime_error("str_attr value error."); } if (int_vec_attr.size() != 3) { throw std::runtime_error("int_vec_attr size error."); } else { for (auto& value : int_vec_attr) { if (value != 10) { throw std::runtime_error("int_vec_attr value error."); } } } if (float_vec_attr.size() != 3) { throw std::runtime_error("float_vec_attr size error."); } else { for (auto& value : float_vec_attr) { if (std::abs(value - 3.14) > 1e-6) { throw std::runtime_error("float_vec_attr value error."); } } } if (int64_vec_attr.size() != 3) { throw std::runtime_error("int64_vec_attr size error."); } else { for (auto& value : int64_vec_attr) { if (value != 10000000000) { throw std::runtime_error("int64_vec_attr value error."); } } } if (str_vec_attr.size() != 3) { throw std::runtime_error("str_vec_attr size error."); } else { for (auto& value : str_vec_attr) { if (value != "StrAttr") { throw std::runtime_error("str_vec_attr value error."); } } } return {out}; } // The attrs of backward op must be the subset of attrs of forward op std::vector AttrTestBackward( const paddle::Tensor& grad_out, int int_attr, std::vector float_vec_attr, std::vector str_vec_attr) { auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU); grad_x.reshape(grad_out.shape()); PD_DISPATCH_FLOATING_TYPES(grad_out.type(), "assign_cpu_kernel", ([&] { assign_cpu_kernel( grad_out.data(), grad_x.mutable_data(), grad_out.size()); })); if (int_attr != 10) { throw std::runtime_error("int_attr value error."); } if (float_vec_attr.size() != 3) { throw std::runtime_error("float_vec_attr size error."); } else { for (auto& value : float_vec_attr) { if (std::abs(value - 3.14) > 1e-6) { throw std::runtime_error("float_vec_attr value error."); } } } if (str_vec_attr.size() != 3) { throw std::runtime_error("str_vec_attr size error."); } else { for (auto& value : str_vec_attr) { if (value != "StrAttr") { throw std::runtime_error("str_vec_attr value error."); } } } return {grad_x}; } std::vector> InferShape(std::vector x_shape) { return {x_shape}; } std::vector InferDType(paddle::DataType x_dtype) { return {x_dtype}; } PD_BUILD_OP("attr_test") .Inputs({"X"}) .Outputs({"Out"}) .Attrs({"bool_attr: bool", "int_attr: int", "float_attr: float", "int64_attr: int64_t", "str_attr: std::string", "int_vec_attr: std::vector", "float_vec_attr: std::vector", "int64_vec_attr: std::vector", "str_vec_attr: std::vector"}) .SetKernelFn(PD_KERNEL(AttrTestForward)) .SetInferShapeFn(PD_INFER_SHAPE(InferShape)) .SetInferDtypeFn(PD_INFER_DTYPE(InferDType)) .SetBackwardOp("attr_test_grad") .Inputs({paddle::Grad("Out")}) .Outputs({paddle::Grad("X")}) .Attrs({"int_attr: int", "float_vec_attr: std::vector", "str_vec_attr: std::vector"}) .SetKernelFn(PD_KERNEL(AttrTestBackward));