tensor.py 17.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Q
qiaolongfei 已提交
38
    'reverse',
Y
Yu Yang 已提交
39 40 41
]


X
xuwei06 已提交
42
def create_tensor(dtype, name=None, persistable=False):
43
    """
Q
update  
qiaolongfei 已提交
44
    Create an variable, which will hold a LoDTensor with data type dtype.
45 46

    Args:
Q
update  
qiaolongfei 已提交
47
        dtype(string): 'float32'|'int32'|..., the data type of the
48
            created tensor.
Q
update  
qiaolongfei 已提交
49
        name(string): The name of the created tensor, if not set,
50
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
51
        persistable(bool): Set the persistable flag of the create tensor.
52 53 54 55 56 57 58 59 60

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
61
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
62 63
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
64 65


66 67
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
68
                     name=None,
69 70 71 72
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
73 74 75 76 77 78
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

79 80 81 82 83 84 85 86 87 88 89
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
90 91 92 93 94 95
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
96
    """
Q
Qiao Longfei 已提交
97
    helper = LayerHelper("create_parameter", **locals())
98
    if attr is None:
X
xuwei06 已提交
99
        attr = ParamAttr(name=name)
100 101 102 103
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
111 112
    Create a new variable in the global block(block 0).

113 114
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
115 116 117 118 119 120 121 122 123 124
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
125 126 127

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
128 129 130 131 132 133

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
134
    """
Q
Qiao Longfei 已提交
135 136 137 138
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
139 140
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
141 142 143
    return var


144
def cast(x, dtype):
Y
Yu Yang 已提交
145
    """
Y
Yibing Liu 已提交
146 147 148 149 150 151 152 153 154 155 156 157
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
158

Y
Yibing Liu 已提交
159 160
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
161 162 163 164 165 166 167 168 169 170 171 172
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


173
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
174
    """
175 176 177
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
178
    and returns that as the output.
179 180 181 182

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
183 184
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
185 186 187 188 189 190

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
191

F
fengjiayi 已提交
192
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
193 194 195 196 197 198 199 200 201 202 203
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


204
def sums(input, out=None):
F
fengjiayi 已提交
205 206
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
207 208 209 210 211
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
212
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
213
                             Default: None
K
kavyasrinet 已提交
214 215

    Returns:
F
fengjiayi 已提交
216
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
217 218

    Examples:
F
fengjiayi 已提交
219
        .. code-block:: python
K
kavyasrinet 已提交
220 221 222 223 224 225

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
226 227
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
228
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
229 230 231 232 233 234 235 236
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


F
fengjiayi 已提交
237
def assign(input, output=None):
238 239 240 241 242 243
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
244
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
245
        output(Variable|None): The destination variable
246 247 248 249 250 251

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
252

253 254 255 256
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
257
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
258 259
    if output is None:
        output = helper.create_tmp_variable(dtype=input.dtype)
X
xuwei06 已提交
260 261
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
262
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
263 264
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
265
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
266
            value_name = "fp32_values"
267
            values = [float(v) for v in input.flat]
268
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
269
            value_name = "int32_values"
270
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
271 272
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
273 274 275
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
276 277 278 279 280 281 282

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
283
                value_name: values
X
xuwei06 已提交
284 285 286 287
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
288 289 290
    return output


Q
QI JUN 已提交
291
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
292
    """
293 294
    **fill_constant**

295 296
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
297

298
    The attribute `stop_gradient` of the created tensor is set to True.
299 300

    Args:
301
        shape(tuple|list|None): Shape of the output tensor.
302
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
303 304
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
305
        force_cpu(True|False): data should be on CPU if set true.
306 307

    Returns:
308
        Variable: The tensor variable storing the output.
309 310 311 312 313

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
314
    """
315

Y
Yu Yang 已提交
316 317 318 319 320 321 322
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
323 324 325 326
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
327
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
328
        })
Y
Yu Yang 已提交
329 330 331 332
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
333
@templatedoc()
Y
Yu Yang 已提交
334 335 336 337 338
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
339
                                  output_dim_idx=0):
340
    """
Y
yuyang18 已提交
341
    ${comment}
342 343 344

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
345 346 347
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

348
    Args:
Y
yuyang18 已提交
349
        input(${input_type}): ${input_comment}.
350

Y
yuyang18 已提交
351
        shape(${shape_type}): ${shape_comment}.
352

Y
yuyang18 已提交
353 354 355
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
356

Y
yuyang18 已提交
357 358 359 360 361
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
362
        ${out_comment}.
363
    """
Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
381 382 383 384 385 386 387 388 389 390 391
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
392

S
sneaxiy 已提交
393 394
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
395

S
sneaxiy 已提交
396 397
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
398

S
sneaxiy 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
423

S
sneaxiy 已提交
424 425
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
426

S
sneaxiy 已提交
427 428
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
429

S
sneaxiy 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
443
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
444
    """
445 446 447 448 449 450 451 452 453
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
454
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
455 456 457 458 459 460 461 462

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
463 464 465 466
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
467
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
468
    """
469 470 471 472 473 474 475 476
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
477 478 479
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
480 481

    Returns:
W
wanghaoshuang 已提交
482
        Variable: The tensor variable storing the output.
483 484 485 486 487

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
488 489
    """
    return fill_constant(value=0.0, **locals())
490 491


F
fengjiayi 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
551 552
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
553
        file_path(str): The file path where variables will be saved.
554
        overwrite(bool): Whether or not cover the given file when it has already
555 556
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})