nn.py 145.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
M
minqiyang 已提交
16 17
from .. import core
from ..layers import utils
18
from ..layers import nn as F
19
from .. import dygraph_utils
M
minqiyang 已提交
20
from . import layers
21
from ..framework import Variable, _non_static_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program, _global_flags, in_dygraph_mode, _in_legacy_dygraph
22
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
25 26
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
27
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
28
import numpy as np
29
import numbers
30
import logging
31
import os
32
import paddle.utils.deprecated as deprecated
33
from paddle import _C_ops, _legacy_C_ops
34

35
__all__ = [
36
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
37 38
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
39
    'SpectralNorm', 'TreeConv', 'Flatten'
40
]
M
minqiyang 已提交
41 42


X
Xin Pan 已提交
43
class Conv2D(layers.Layer):
44
    r"""
45 46
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
47 48 49
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
50 51 52
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
53
    and W is the width of the filter. If the groups is greater than 1,
54
    C will equal the number of input feature map divided by the groups.
55
    Please refer to UFLDL's `convolution
56
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
57
    for more details.
58 59 60 61 62 63 64 65
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

66
        Out = \\sigma (W \\ast X + b)
67 68 69

    Where:

70 71
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
72
    * :math:`\\ast`: Convolution operation.
73
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

96
    Parameters:
97
        num_channels(int): The number of channels in the input image.
98
        num_filters(int): The number of filter. It is as same as the output
99 100
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
101 102
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
103
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
104
            contain two integers, (stride_H, stride_W). Otherwise, the
105 106
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
107
            contain two integers, (padding_H, padding_W). Otherwise, the
108 109
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
110
            contain two integers, (dilation_H, dilation_W). Otherwise, the
111
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
112
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
113 114 115
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
116 117
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
118 119 120 121
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
122
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
123 124 125 126
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
127 128 129 130 131
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
132

133 134 135 136
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
137

138 139
    Returns:
        None
140

141
    Raises:
142
        ValueError: if ``use_cudnn`` is not a bool value.
143 144 145

    Examples:
        .. code-block:: python
L
lujun 已提交
146

147 148 149 150 151
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

152
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
153
          with fluid.dygraph.guard():
154
              conv2d = Conv2D(3, 2, 3)
155 156
              data = to_variable(data)
              conv = conv2d(data)
157 158 159

    """

M
minqiyang 已提交
160
    def __init__(self,
161
                 num_channels,
M
minqiyang 已提交
162 163 164 165 166 167 168 169
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
170 171 172
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
173
        assert param_attr is not False, "param_attr should not be False here."
174
        super(Conv2D, self).__init__()
175 176 177 178 179

        if (core.is_compiled_with_cuda() and paddle.fluid.get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            use_cudnn = False

180
        self._num_channels = num_channels
M
minqiyang 已提交
181 182 183 184
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
185
        self._act = act
M
minqiyang 已提交
186 187 188
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
189
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
190 191 192 193 194
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
195

196 197 198
        if (self._num_channels == self._groups
                and num_filters % self._num_channels == 0
                and not self._use_cudnn and not self._use_mkldnn):
199 200 201
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
202

203 204
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
205 206
            if (self._num_channels == self._groups
                    and self._num_channels == self._num_filters):
207
                self._l_type = 'depthwise_conv2d'
208
            else:
209
                self._l_type = 'conv2d'
210

211
        self._num_channels = num_channels
212 213
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
214
        else:
215
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
216
                raise ValueError("num_channels must be divisible by groups.")
217 218
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
219
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
220 221

        def _get_default_param_initializer():
222 223
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
224 225 226
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

227
        self.weight = self.create_parameter(
228
            attr=self._param_attr,
M
minqiyang 已提交
229 230 231 232
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

233 234 235 236
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
M
minqiyang 已提交
237 238

    def forward(self, input):
H
hong 已提交
239
        if in_dygraph_mode() and self._l_type == "conv2d":
240 241 242 243
            pre_bias = _C_ops.conv2d(input, self.weight, self._stride,
                                     self._padding, "EXPLICIT",
                                     self._groups if self._groups else 1,
                                     self._dilation, "NCHW", False, -1, False)
H
hong 已提交
244 245 246 247 248 249 250
            if self.bias is not None:
                pre_act = F.elementwise_add(pre_bias, self.bias, axis=1)
            else:
                pre_act = pre_bias
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)

251 252
        if _non_static_mode() and (self._l_type == 'conv2d'
                                   or self._l_type == 'depthwise_conv2d'):
253
            attrs = ('strides', self._stride, 'paddings', self._padding,
254 255 256
                     'dilations', self._dilation, 'groups',
                     self._groups if self._groups else 1, 'use_cudnn',
                     self._use_cudnn, 'use_mkldnn', self._use_mkldnn)
257
            out = _legacy_C_ops.conv2d(input, self.weight, *attrs)
258 259
            pre_bias = out

260 261 262 263
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
264 265
        inputs = {
            'Input': [input],
266
            'Filter': [self.weight],
267 268 269 270 271 272 273
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
274
            'use_mkldnn': self._use_mkldnn,
275
        }
276 277 278

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
279 280 281
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

282 283 284 285 286 287 288
        self._helper.append_op(type=self._l_type,
                               inputs={
                                   'Input': input,
                                   'Filter': self.weight,
                               },
                               outputs={"Output": pre_bias},
                               attrs=attrs)
M
minqiyang 已提交
289

290
        if self.bias is not None:
291 292
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
293 294 295 296 297 298 299 300 301 302
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={
                                       'axis': 1,
                                       'use_mkldnn': self._use_mkldnn
                                   })
303 304
        else:
            pre_act = pre_bias
M
minqiyang 已提交
305

L
lujun 已提交
306
        # Currently, we don't support inplace in dygraph mode
307
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
308 309


L
lujun 已提交
310
class Conv3D(layers.Layer):
311
    r"""
312 313 314 315
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
316
    Output(Output) are multidimensional tensors with a shape of
D
DuYao 已提交
317
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
318 319 320 321 322 323 324 325 326 327 328 329 330 331
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
332
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

358
    Parameters:
359
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
360
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
361
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
362
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
363 364 365
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
366
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
367 368
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
369
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
370 371
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
372
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
373
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
374
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
375 376 377
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
378 379
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
380 381 382
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
383 384
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
385 386 387
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
388 389 390 391 392
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
393
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
394

D
DuYao 已提交
395 396 397 398
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
399

400
    Returns:
D
DuYao 已提交
401
        None.
402 403 404 405 406 407 408 409

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

410 411 412 413 414 415
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
416
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
417 418
              ret = conv3d(fluid.dygraph.base.to_variable(data))

419 420
    """

L
lujun 已提交
421
    def __init__(self,
422
                 num_channels,
L
lujun 已提交
423 424 425 426 427 428 429 430 431
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
432 433
                 act=None,
                 dtype='float32'):
L
lujun 已提交
434
        assert param_attr is not False, "param_attr should not be False here."
435 436
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
437 438 439
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
440
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
441 442
        self._act = act
        self._use_cudnn = use_cudnn
443 444 445 446
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
447
        self._dtype = dtype
448 449

        if self._groups is None:
450
            num_filter_channels = self._num_channels
L
lujun 已提交
451
        else:
452
            if self._num_channels % self._groups != 0:
L
lujun 已提交
453
                raise ValueError("num_channels must be divisible by groups.")
454
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
455

456 457
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
458 459 460

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
461
                2] * self._num_channels
L
lujun 已提交
462 463 464
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

465
        self.weight = self.create_parameter(
466
            attr=self._param_attr,
L
lujun 已提交
467 468 469 470
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

471 472 473 474
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
475 476 477 478 479

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
        self._helper.append_op(type='conv3d',
                               inputs={
                                   'Input': input,
                                   'Filter': self.weight,
                               },
                               outputs={"Output": pre_bias},
                               attrs={
                                   'strides': self._stride,
                                   'paddings': self._padding,
                                   'dilations': self._dilation,
                                   'groups':
                                   self._groups if self._groups else 1,
                                   'use_cudnn': self._use_cudnn,
                                   'use_mkldnn': False
                               })
L
lujun 已提交
495

496
        if self.bias is not None:
497 498
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
499 500 501 502 503 504 505
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
506 507
        else:
            pre_act = pre_bias
L
lujun 已提交
508 509 510 511 512

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
513
    r"""
L
lujun 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
559 560 561 562 563 564 565 566
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

567 568
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
D
DuYao 已提交
569 570
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
571 572 573 574 575
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
D
DuYao 已提交
576 577
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
578

579
    Parameters:
580
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
581 582
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
583
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
584
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
585
            Otherwise, the filter will be a square.
D
DuYao 已提交
586 587 588 589 590 591 592 593 594 595
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
596 597 598
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
D
DuYao 已提交
599 600
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
601
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
602
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
603
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
604 605 606 607
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
608 609
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
610 611
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
612 613
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
614 615 616
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
617 618 619 620 621
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
622
        name(str, optional): The default value is None. Normally there is no need for user
D
DuYao 已提交
623
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
624

D
DuYao 已提交
625 626 627 628
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
629

L
lujun 已提交
630
    Returns:
D
DuYao 已提交
631
        None.
L
lujun 已提交
632 633 634 635 636 637 638 639

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

640 641 642 643 644 645
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
646
                    num_channels=3,
647 648 649 650 651
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
652 653
    """

L
lujun 已提交
654
    def __init__(self,
655
                 num_channels,
L
lujun 已提交
656
                 num_filters,
657
                 filter_size,
L
lujun 已提交
658 659 660 661 662 663 664 665
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
666 667
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
668 669 670 671 672 673 674
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
675
        self._num_channels = num_channels
L
lujun 已提交
676 677 678 679 680 681
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
682
        self._dtype = dtype
L
lujun 已提交
683

684 685
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
686

687 688
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
689 690 691 692 693 694 695
        self.weight = self.create_parameter(dtype=self._dtype,
                                            shape=filter_shape,
                                            attr=self._param_attr)
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
696 697 698 699

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
700 701 702 703 704 705 706 707 708 709 710 711 712 713
        self._helper.append_op(type="conv3d_transpose",
                               inputs={
                                   'Input': [input],
                                   'Filter': [self.weight]
                               },
                               outputs={'Output': pre_bias},
                               attrs={
                                   'strides': self._stride,
                                   'paddings': self._padding,
                                   'dilations': self._dilation,
                                   'groups':
                                   self._groups if self._groups else 1,
                                   'use_cudnn': self._use_cudnn
                               })
L
lujun 已提交
714 715 716 717

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
718 719 720 721 722 723 724
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
L
lujun 已提交
725 726 727 728 729 730 731
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
732
class Pool2D(layers.Layer):
733
    r"""
734

735 736 737 738 739
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
740 741
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

787
    Parameters:
788
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
789
            it must contain two integers, (pool_size_Height, pool_size_Width).
790
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
791
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling.
792 793
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
794
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
795
            the pool stride size will be a square of an int. Default: 1.
796
        pool_padding (int or list or tuple, optional): The padding size for pooling operation.
797
            If ``pool_padding`` is a tuple,
798
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
799 800 801 802 803 804 805
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
806 807
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
808
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is
809
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
810 811

    Returns:
812
        None
813 814

    Raises:
815 816 817 818
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
819 820 821 822 823

    Examples:

        .. code-block:: python

L
lujun 已提交
824
          import paddle.fluid as fluid
825 826
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
827 828

          with fluid.dygraph.guard():
829
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
830
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
831 832 833
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
834
             pool2d_res = pool2d(to_variable(data))
835 836 837

    """

M
minqiyang 已提交
838 839 840 841 842 843 844 845
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
846 847 848 849
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

863
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
864

865 866 867 868 869
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

870
        super(Pool2D, self).__init__()
M
minqiyang 已提交
871 872 873 874 875 876 877 878 879 880

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
881
        self._data_format = data_format
M
minqiyang 已提交
882 883 884
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
885
        if _non_static_mode():
886 887 888 889 890 891 892
            if not self._use_mkldnn and in_dygraph_mode():
                return _C_ops.pool2d(input, self._pool_size, self._pool_stride,
                                     self._pool_padding, self._ceil_mode,
                                     self._exclusive, self._data_format,
                                     self._pool_type, self._global_pooling,
                                     False, "EXPLICIT", self._use_cudnn)

893 894 895 896
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
897 898
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
899
            return _legacy_C_ops.pool2d(input, *attrs)
900

901 902 903 904
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

905 906 907 908 909 910 911 912
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
913
            "use_mkldnn": self._use_mkldnn,
914
            "exclusive": self._exclusive,
915
            "data_format": self._data_format,
916 917 918
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
919 920
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

921 922 923 924
        self._helper.append_op(type=self._l_type,
                               inputs={"X": input},
                               outputs={"Out": pool_out},
                               attrs=attrs)
M
minqiyang 已提交
925
        return pool_out
M
minqiyang 已提交
926 927


S
songyouwei 已提交
928 929
class Linear(layers.Layer):
    """
930

S
songyouwei 已提交
931 932 933 934 935 936 937 938
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

939
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
990 991 992 993 994 995 996 997
        self.weight = self.create_parameter(shape=[input_dim, output_dim],
                                            attr=param_attr,
                                            dtype=dtype,
                                            is_bias=False)
        self.bias = self.create_parameter(shape=[output_dim],
                                          attr=bias_attr,
                                          dtype=dtype,
                                          is_bias=True)
S
songyouwei 已提交
998

999
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
1000

S
songyouwei 已提交
1001
    def forward(self, input):
J
Jiabin Yang 已提交
1002
        if _non_static_mode():
1003
            pre_bias = _varbase_creator(dtype=input.dtype)
1004 1005 1006
            _legacy_C_ops.matmul(input, self.weight, pre_bias, 'transpose_X',
                                 False, 'transpose_Y', False, "alpha", 1,
                                 "use_mkldnn", self._use_mkldnn)
1007
            pre_act = dygraph_utils._append_bias_in_dygraph(
1008 1009 1010 1011
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
1012

1013 1014
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
1015 1016 1017 1018

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

1019
        attrs = {
S
songyouwei 已提交
1020 1021 1022
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1023
            "use_mkldnn": self._use_mkldnn,
1024 1025
        }
        inputs = {"X": [input], "Y": [self.weight]}
1026

S
songyouwei 已提交
1027
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
1028 1029 1030 1031
        self._helper.append_op(type="matmul",
                               inputs=inputs,
                               outputs={"Out": tmp},
                               attrs=attrs)
1032
        if self.bias is not None:
S
songyouwei 已提交
1033 1034
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [tmp],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_activation]},
                                   attrs={
                                       'axis': len(input.shape) - 1,
                                       'use_mkldnn': self._use_mkldnn
                                   })
S
songyouwei 已提交
1045 1046 1047 1048 1049
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1050
class InstanceNorm(layers.Layer):
1051
    r"""
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1082
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1083 1084
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1085
	     If the Initializer of the param_attr is not set, the parameter is initialized
C
ceci3 已提交
1086 1087
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1088
             If it is set to None or one attribute of ParamAttr, instance_norm
1089 1090
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
C
ceci3 已提交
1091
             If it is set to False, will not create bias_attr. Default: None.
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

1107
          # x's shape is [1, 3, 1, 2]
1108 1109 1110 1111 1112
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
1113
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995]
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1126 1127
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1128 1129 1130 1131 1132
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1133 1134 1135 1136 1137 1138 1139
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
1140 1141 1142 1143 1144
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[num_channels],
                                              dtype=self._dtype,
                                              default_initializer=Constant(0.0),
                                              is_bias=True)
C
ceci3 已提交
1145 1146 1147
        else:
            self.scale = None
            self.bias = None
1148 1149

    def forward(self, input):
1150
        if in_dygraph_mode():
1151 1152
            out = _C_ops.instance_norm(input, self.scale, self.bias,
                                       self._epsilon)
1153 1154
            return out
        if _in_legacy_dygraph():
1155 1156 1157
            out, _, _ = _legacy_C_ops.instance_norm(input, self.scale,
                                                    self.bias, 'epsilon',
                                                    self._epsilon)
1158 1159 1160 1161 1162 1163 1164
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1165 1166 1167 1168
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

1183 1184 1185 1186
        self._helper.append_op(type="instance_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
1187 1188 1189
        return instance_norm_out


M
minqiyang 已提交
1190
class BatchNorm(layers.Layer):
1191
    r"""
1192

1193 1194
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
1195
    It implements the function of the Batch Normalization Layer and can be used
1196 1197
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1198 1199 1200 1201
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1202
    When use_global_stats = False, the :math:`\mu_{\beta}`
1203
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1204
    Calculated as follows:
1205 1206 1207

    ..  math::

1208 1209 1210 1211
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1212

1213 1214
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1215 1216 1217

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1218 1219 1220 1221 1222 1223
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1224

1225
    The normalization function formula is as follows:
1226

1227 1228
    ..  math::

1229 1230 1231 1232
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1233

1234 1235 1236
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1237

1238
    Parameters:
1239
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1240
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1241 1242 1243
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1244 1245 1246
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1247 1248 1249
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1250
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1251 1252 1253
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1254 1255 1256 1257 1258 1259
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1260 1261
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1262
        use_global_stats(bool, optional): Whether to use global mean and
1263 1264 1265
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1266 1267 1268 1269
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1270 1271

    Returns:
1272
        None
1273 1274 1275

    Examples:
        .. code-block:: python
L
lujun 已提交
1276 1277

          import paddle.fluid as fluid
1278 1279
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1280

1281
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1282
          with fluid.dygraph.guard():
1283
              x = to_variable(x)
1284
              batch_norm = fluid.BatchNorm(10)
1285
              hidden1 = batch_norm(x)
1286 1287
    """

M
minqiyang 已提交
1288 1289 1290 1291 1292 1293 1294 1295
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1296
                 dtype='float32',
M
minqiyang 已提交
1297 1298 1299 1300
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1301
                 do_model_average_for_mean_and_var=True,
1302 1303
                 use_global_stats=False,
                 trainable_statistics=False):
1304
        super(BatchNorm, self).__init__()
1305
        self._param_attr = param_attr
1306
        self._bias_attr = bias_attr
1307
        self._act = act
1308
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1309 1310 1311

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1312 1313
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1314 1315 1316 1317 1318 1319
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1320 1321 1322 1323
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            default_initializer=Constant(1.0))
1324
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1325

1326 1327 1328 1329
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=param_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
1330
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1331

1332 1333 1334 1335 1336 1337 1338
        self._mean = self.create_parameter(attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
                                           shape=param_shape,
                                           dtype=self._dtype)
1339
        self._mean.stop_gradient = True
M
minqiyang 已提交
1340

1341 1342 1343 1344 1345 1346 1347
        self._variance = self.create_parameter(attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
                                               shape=param_shape,
                                               dtype=self._dtype)
1348
        self._variance.stop_gradient = True
M
minqiyang 已提交
1349 1350

        self._in_place = in_place
1351
        self._data_layout = data_layout
M
minqiyang 已提交
1352 1353 1354
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1355
        self._fuse_with_relu = False
M
minqiyang 已提交
1356
        self._use_global_stats = use_global_stats
1357
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1358 1359 1360 1361 1362 1363 1364

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1365

J
Jiabin Yang 已提交
1366
        if _non_static_mode():
H
hong 已提交
1367
            if in_dygraph_mode():
1368
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
H
hong 已提交
1369 1370 1371 1372
                    input, self.weight, self.bias, self._mean, self._variance,
                    self._momentum, self._epsilon, self._data_layout,
                    not self.training, self._use_global_stats,
                    self._trainable_statistics, False)
1373 1374 1375 1376
                return dygraph_utils._append_activation_in_dygraph(
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)

            elif _in_legacy_dygraph():
H
hong 已提交
1377 1378 1379 1380 1381 1382
                attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                         "is_test", not self.training, "data_layout",
                         self._data_layout, "use_mkldnn", self._use_mkldnn,
                         "fuse_with_relu", self._fuse_with_relu,
                         "use_global_stats", self._use_global_stats,
                         'trainable_statistics', self._trainable_statistics)
1383
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
H
hong 已提交
1384
                    input, self.weight, self.bias, self._mean, self._variance,
1385 1386
                    None, mean_out, variance_out, *attrs)

1387
            return dygraph_utils._append_activation_in_dygraph(
1388
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1389

1390 1391 1392
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1393 1394 1395 1396 1397 1398 1399
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1400 1401
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1402
        }
M
minqiyang 已提交
1403

1404 1405 1406 1407 1408 1409 1410 1411
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1412 1413 1414 1415
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1416 1417
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1418

1419 1420
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1421 1422 1423 1424 1425 1426 1427 1428

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1429
        if reserve_space is not None:
1430
            outputs["ReserveSpace"] = [reserve_space]
1431

1432 1433 1434 1435
        self._helper.append_op(type="batch_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
M
minqiyang 已提交
1436

L
lujun 已提交
1437
        # Currently, we don't support inplace in dygraph mode
1438
        return self._helper.append_activation(batch_norm_out, self._act)
1439 1440


1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1520 1521 1522
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1523 1524 1525 1526 1527
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1528 1529
            'is_test':
            not self.training if _non_static_mode() else self._is_test,
1530 1531 1532 1533 1534
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1535
        if _non_static_mode():
1536
            attrs = sum(attrs.items(), ())
1537
            out, mask = _legacy_C_ops.dropout(input, *attrs)
1538 1539 1540 1541 1542 1543
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1544 1545 1546 1547 1548 1549 1550
        self._helper.append_op(type='dropout',
                               inputs={'X': [input]},
                               outputs={
                                   'Out': [out],
                                   'Mask': [mask]
                               },
                               attrs=attrs)
1551 1552 1553
        return out


1554
class Embedding(layers.Layer):
1555
    r"""
1556 1557 1558 1559
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1560 1561
    **Embedding Layer**

Z
zhongpu 已提交
1562 1563 1564 1565 1566 1567
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1568 1569
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1570

1571
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1572 1573 1574 1575 1576 1577 1578
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1579 1580
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1581 1582 1583 1584 1585 1586 1587 1588
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1589

Z
zhongpu 已提交
1590 1591 1592 1593
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1594

1595
    Parameters:
L
lujun 已提交
1596 1597
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1598
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
1599
            affects the performance of the backwards gradient update. It is recommended to set
Z
zhongpu 已提交
1600
            True because sparse update is faster. But some optimizer does not support sparse update,
1601
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
Z
zhongpu 已提交
1602 1603 1604 1605 1606
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
1607
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Z
zhongpu 已提交
1608 1609 1610 1611 1612 1613
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
1614
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
Z
zhongpu 已提交
1615
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1616
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1617 1618 1619
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1620

Z
zhongpu 已提交
1621 1622
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1623

1624
    Returns:
Z
zhongpu 已提交
1625
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1626 1627

    Examples:
1628

1629 1630
        .. code-block:: python

L
lujun 已提交
1631 1632 1633 1634
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1635
          # example 1
1636 1637
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1638 1639
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1640
              emb = fluid.dygraph.Embedding(
1641 1642 1643
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1644
              static_rlt3 = emb(base.to_variable(inp_word))
1645
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
1659
              static_rlt3 = emb(base.to_variable(inp_word))
1660 1661
    """

1662 1663 1664 1665 1666 1667 1668
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1669
        super(Embedding, self).__init__()
1670 1671 1672 1673
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1674
            size[0] + padding_idx)
1675 1676 1677

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1678
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1679 1680 1681
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1682 1683 1684 1685
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=self._size,
                                            dtype=self._dtype,
                                            is_bias=False)
1686 1687

    def forward(self, input):
J
Jiabin Yang 已提交
1688
        if _non_static_mode():
1689 1690 1691 1692
            return _legacy_C_ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)
1693

1694 1695 1696
        check_variable_and_dtype(input, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'Embedding')
1697 1698 1699 1700 1701 1702
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1703

1704
        out = self._helper.create_variable_for_type_inference(self._dtype)
1705 1706 1707 1708 1709 1710 1711
        self._helper.append_op(type='lookup_table_v2',
                               inputs={
                                   'Ids': input,
                                   'W': self.weight
                               },
                               outputs={'Out': out},
                               attrs=attrs)
1712 1713

        return out
M
minqiyang 已提交
1714 1715


1716
class LayerNorm(layers.Layer):
1717
    r"""
1718 1719 1720 1721
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1722 1723 1724
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1725
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1726

1727
    The formula is as follows:
1728

1729
    ..  math::
1730

1731
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1732

1733
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1734

1735
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1736

1737 1738 1739 1740 1741
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1742

1743
    Parameters:
1744 1745 1746 1747
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1748
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1749
            normalization. Default: True.
1750
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1751
            normalization. Default: True.
1752
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1753
            division by zero. Default: 1e-05.
1754
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1755 1756 1757
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1758
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1759
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1760 1761 1762
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1763
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1764
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1765
                  Default: None.
1766 1767
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1768
    Returns:
1769
        None
1770

1771
    Examples:
1772

1773 1774 1775
        .. code-block:: python

          import paddle.fluid as fluid
1776
          from paddle.fluid.dygraph.base import to_variable
1777 1778
          import numpy

1779
          x = numpy.random.random((3, 32, 32)).astype('float32')
1780
          with fluid.dygraph.guard():
1781
              x = to_variable(x)
1782
              layerNorm = fluid.LayerNorm([32, 32])
1783
              ret = layerNorm(x)
1784

1785
    """
1786

1787
    def __init__(self,
1788
                 normalized_shape,
1789 1790 1791 1792 1793
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1794 1795 1796 1797 1798
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1799

1800
        self._normalized_shape = list(normalized_shape)
1801 1802 1803 1804 1805 1806
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1807 1808
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1809
        if self._scale:
1810
            self.weight = self.create_parameter(
1811 1812 1813 1814
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1815 1816
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1817
                logging.warn("param_attr are only available with scale is True")
1818
            self.weight = None
1819

1820 1821
        if self._shift:
            assert self._bias_attr is not False
1822 1823 1824 1825
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=param_shape,
                                              dtype=self._dtype,
                                              is_bias=True)
1826 1827
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1828
                logging.warn("bias_attr are only available with shift is True")
1829
            self.bias = None
1830 1831

    def forward(self, input):
1832 1833 1834 1835 1836 1837 1838
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
1839 1840 1841 1842 1843
            raise ValueError('Given normalized_shape is ' +
                             str_normalized_shape +
                             ', expected input with shape [*, ' +
                             str_normalized_shape[1:] +
                             ', but got input shape ' + str(input_shape))
1844

J
Jiabin Yang 已提交
1845
        if _non_static_mode():
H
hong 已提交
1846
            if in_dygraph_mode():
1847 1848 1849
                pre_act, _, _, = _C_ops.layer_norm(input, self.weight,
                                                   self.bias, self._epsilon,
                                                   self._begin_norm_axis, False)
H
hong 已提交
1850 1851 1852
                return dygraph_utils._append_activation_in_dygraph(
                    pre_act, act=self._act)
            else:
1853 1854 1855
                pre_act, _, _ = _legacy_C_ops.layer_norm(
                    input, self.weight, self.bias, 'epsilon', self._epsilon,
                    'begin_norm_axis', self._begin_norm_axis)
H
hong 已提交
1856 1857
                return dygraph_utils._append_activation_in_dygraph(
                    pre_act, act=self._act)
1858

1859 1860 1861
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1862
        inputs = dict()
1863
        inputs['X'] = [input]
1864
        if self._scale:
1865
            inputs['Scale'] = [self.weight]
1866
        if self._shift:
1867 1868 1869 1870 1871 1872
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1873 1874 1875 1876 1877 1878 1879 1880
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        self._helper.append_op(type="layer_norm",
                               inputs=inputs,
                               outputs={
                                   "Y": layer_norm_out,
                                   "Mean": mean_out,
                                   "Variance": variance_out,
                               },
                               attrs={
                                   "epsilon": self._epsilon,
                                   "begin_norm_axis": self._begin_norm_axis
                               })
1892

1893
        return self._helper.append_activation(layer_norm_out, act=self._act)
1894 1895


M
minqiyang 已提交
1896 1897 1898
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
1899

D
DuYao 已提交
1900 1901
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
1902
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
D
DuYao 已提交
1903
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1914
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1940
    Parameters:
L
lujun 已提交
1941
        size (int): The input dimension value.
D
DuYao 已提交
1942
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1943 1944
            hidden-hidden weight matrix.

D
DuYao 已提交
1945
            **Note**:
1946

D
DuYao 已提交
1947
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
1948 1949
                2. All elements in the weight matrix can be divided into two parts. The first
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`,
D
DuYao 已提交
1950
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1951 1952 1953 1954


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
1955
            is not set, the parameter is initialized with Xavier. The default
D
DuYao 已提交
1956 1957 1958
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1959 1960 1961 1962 1963
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1964
            is initialized zero. The default value is None.
L
lujun 已提交
1965
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1966
                             The default value is 'tanh'.
L
lujun 已提交
1967
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1968 1969 1970
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1971

D
DuYao 已提交
1972 1973 1974 1975
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1976

M
minqiyang 已提交
1977
    Returns:
D
DuYao 已提交
1978 1979
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
1980
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with
D
DuYao 已提交
1981
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1995
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1996 1997 1998
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1999
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
2000 2001 2002
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
2013
        super(GRUUnit, self).__init__()
2014
        self._bias_attr = bias_attr
M
minqiyang 已提交
2015 2016 2017 2018
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
2019 2020
            relu=3,
        )
H
Hongyu Liu 已提交
2021 2022
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
2023

M
minqiyang 已提交
2024
        self._dtype = dtype
M
minqiyang 已提交
2025 2026
        size = size // 3
        # create weight
2027 2028 2029
        self.weight = self.create_parameter(attr=param_attr,
                                            shape=[size, 3 * size],
                                            dtype=dtype)
M
minqiyang 已提交
2030 2031

        # create bias
M
minqiyang 已提交
2032
        bias_size = [1, 3 * size]
2033
        self._bias_size = bias_size
2034 2035 2036 2037
        self.bias = self.create_parameter(attr=bias_attr,
                                          shape=bias_size,
                                          dtype=dtype,
                                          is_bias=True)
M
minqiyang 已提交
2038

M
minqiyang 已提交
2039
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
2040
        if _non_static_mode():
2041
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
2042 2043 2044 2045
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

2046 2047 2048 2049
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
2050 2051 2052 2053 2054
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
2055
        if self.bias is not None:
2056
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2057 2058 2059 2060 2061
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
        self._helper.append_op(type='gru_unit',
                               inputs=inputs,
                               outputs={
                                   'Gate': gate,
                                   'ResetHiddenPrev': reset_hidden_pre,
                                   'Hidden': updated_hidden,
                               },
                               attrs={
                                   'activation': self.activation,
                                   'gate_activation': self.gate_activation,
                               })
M
minqiyang 已提交
2073 2074

        return updated_hidden, reset_hidden_pre, gate
2075 2076 2077 2078


class NCE(layers.Layer):
    """
2079 2080 2081 2082 2083
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2084
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2085

2086
    Parameters:
2087 2088
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2089
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2090 2091 2092
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2093
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2094 2095 2096 2097
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2098
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2099
        sampler (str, optional): The sampler used to sample class from negative classes.
2100 2101
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2102
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2103
                       It is used when sampler is set to 'custom_dist'.
2104
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2105
                       Default: None.
2106 2107
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2108
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2109

2110 2111
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2112

2113
        **bias** (Parameter or None): the learnable bias of this layer.
2114

2115
    Returns:
2116
        None
2117 2118 2119 2120

    Examples:
        .. code-block:: python

2121 2122 2123
            import numpy as np
            import paddle.fluid as fluid

2124
            window_size = 5
2125 2126
            dict_size = 20
            label_word = int(window_size // 2) + 1
2127
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2149
                nce = fluid.NCE(
2150
                             num_total_classes=dict_size,
2151
                             dim=embs3.shape[1],
2152 2153 2154 2155 2156 2157 2158
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2159 2160
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2161 2162 2163 2164 2165

    """

    def __init__(self,
                 num_total_classes,
2166
                 dim,
2167
                 sample_weight=None,
2168 2169 2170 2171 2172 2173
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2174 2175 2176
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2177 2178 2179
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2180
        self._dtype = dtype
2181
        self._inputs = dict()
2182
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2270
        self.weight = self.create_parameter(
2271 2272 2273
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2274
            dtype=self._dtype)
2275
        if self._bias_attr:
2276
            self.bias = self.create_parameter(
2277 2278 2279
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2280
                dtype=self._dtype)
2281 2282
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2283

2284
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2285
        if _non_static_mode():
W
Weilong Wu 已提交
2286 2287 2288 2289 2290
            attrs = ('num_total_classes', self._attrs['num_total_classes'],
                     'num_neg_samples', self._attrs['num_neg_samples'], 'seed',
                     self._attrs['seed'], 'sampler', self._attrs['sampler'],
                     'is_sparse', self._attrs['is_sparse'], 'remote_prefetch',
                     self._attrs['remote_prefetch'])
2291 2292 2293 2294 2295 2296
            cost, _, _ = _legacy_C_ops.nce(input, label, self.weight, self.bias,
                                           self._inputs['SampleWeight'],
                                           self._inputs['CustomDistProbs'],
                                           self._inputs['CustomDistAlias'],
                                           self._inputs['CustomDistAliasProbs'],
                                           *attrs)
W
Weilong Wu 已提交
2297 2298
            return cost / (self._num_neg_samples + 1)

2299 2300 2301 2302
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

2317 2318 2319 2320 2321 2322 2323 2324
        self._helper.append_op(type='nce',
                               inputs=self._inputs,
                               outputs={
                                   'Cost': cost,
                                   'SampleLogits': sample_logits,
                                   'SampleLabels': sample_labels
                               },
                               attrs=self._attrs)
2325 2326 2327 2328
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2329
    r"""
2330 2331 2332 2333
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2334 2335 2336 2337 2338
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2339
    Parameters:
L
lujun 已提交
2340
        mode (str): The mode for weight sharing. It supports all, channel
2341 2342 2343
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2344 2345 2346
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2347
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2348 2349
          This argument is required when mode is "element".
          Default: None.
2350 2351
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2352
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2353

2354 2355
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2356

2357
    Returns:
2358
        None
2359 2360 2361 2362 2363

    Examples:

        .. code-block:: python

L
lujun 已提交
2364
          import paddle.fluid as fluid
2365
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2366 2367 2368 2369
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2370
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2382
                 input_shape=inp_np.shape,
L
lujun 已提交
2383
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2384
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2385

2386 2387
    """

S
songyouwei 已提交
2388 2389 2390 2391 2392
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2393
                 dtype='float32'):
2394 2395
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2396 2397
        self._mode = mode
        self._param_attr = param_attr
2398
        self._dtype = dtype
S
songyouwei 已提交
2399 2400 2401 2402 2403 2404
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2405
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2406
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2407
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2408 2409
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2410
        elif mode == 'element':
2411 2412 2413 2414
            assert isinstance(
                input_shape,
                (list, tuple
                 )), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2415 2416 2417
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2418 2419 2420 2421 2422
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=self._alpha_shape,
                                            dtype='float32',
                                            is_bias=False,
                                            default_initializer=Constant(1.0))
2423 2424

    def forward(self, input):
2425 2426 2427
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

2428
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2429
        out = self._helper.create_variable_for_type_inference(self._dtype)
2430 2431 2432 2433 2434 2435 2436
        self._helper.append_op(type="prelu",
                               inputs={
                                   "X": input,
                                   'Alpha': self.weight
                               },
                               attrs={"mode": self._mode},
                               outputs={"Out": out})
2437 2438 2439 2440
        return out


class BilinearTensorProduct(layers.Layer):
2441
    r"""
2442

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2456
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2457

2458
    Parameters:
2459 2460 2461 2462 2463
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2464
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
2465
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
D
DuYao 已提交
2466 2467
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2468
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2469
           If it is set to None, the bias is initialized zero. The default value is None.
2470
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2471

D
DuYao 已提交
2472 2473 2474 2475
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2476

2477
    Returns:
W
wanghuancoder 已提交
2478
       Tensor: A 2-D Tensor of shape [batch_size, size].
2479 2480 2481 2482

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2492

2493 2494 2495
    """

    def __init__(self,
2496 2497 2498
                 input1_dim,
                 input2_dim,
                 output_dim,
2499 2500 2501
                 name=None,
                 act=None,
                 param_attr=None,
2502 2503 2504
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2505 2506 2507 2508
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2509 2510 2511
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2512
        self._inputs = dict()
2513
        self._dtype = dtype
2514

2515
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2516 2517 2518 2519
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
2520
        bias_size = [1, self._output_dim]
2521 2522 2523 2524 2525 2526 2527 2528
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=bias_size,
                                          dtype=self._dtype,
                                          is_bias=True)

    @deprecated(since="2.0.0",
                update_to="paddle.nn.Bilinear",
                reason="New name and new args in Bilinear, easier to use.")
2529
    def forward(self, x, y):
2530 2531 2532 2533
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2534
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2535
        if self.bias is not None:
2536
            self._inputs["Bias"] = self.bias
2537
        if self._name is not None:
2538 2539 2540 2541
            out = self._helper.create_variable(name=".".join(
                [self.full_name(), self._name]),
                                               dtype=self._dtype,
                                               persistable=False)
2542
        else:
2543 2544 2545 2546 2547
            out = self._helper.create_variable(dtype=self._dtype,
                                               persistable=False)
        self._helper.append_op(type="bilinear_tensor_product",
                               inputs=self._inputs,
                               outputs={"Out": out})
2548 2549

        # add activation
2550
        return self._helper.append_activation(out, act=self._act)
2551 2552 2553


class Conv2DTranspose(layers.Layer):
2554
    r"""
2555 2556
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2557
    The convolution2D transpose layer calculates the output based on the input,
2558 2559 2560
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2561 2562
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2563 2564
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2565 2566 2567
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2568 2569
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2570 2571 2572 2573 2574 2575 2576 2577 2578

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2579 2580
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2581
    * :math:`\\ast`: Convolution operation.
2582
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2607
    Parameters:
2608
        num_channels(int): The number of channels in the input image.
2609
        num_filters(int): The number of the filter. It is as same as the output
2610
            feature map.
2611 2612 2613
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2614
        output_size(int or tuple, optional): The output image size. If output size is a
2615 2616 2617
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2618
            should follow the formula above. Default: None.
2619
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2620
            contain two integers, (padding_H, padding_W). Otherwise, the
2621 2622
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2623
            contain two integers, (stride_H, stride_W). Otherwise, the
2624 2625
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2626
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2627
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2628
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2629 2630 2631 2632
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2633 2634
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2635 2636 2637
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2638
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2639 2640 2641 2642
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2643
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2644
            library is installed. Default: True.
2645
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2646
            Default: None.
2647
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2648

2649 2650
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2651

2652
        **bias** (Parameter or None): the learnable bias of this layer.
2653

2654 2655
    Returns:
        None
2656 2657 2658 2659

    Examples:
       .. code-block:: python

2660
          import paddle.fluid as fluid
2661
          import numpy as np
2662 2663

          with fluid.dygraph.guard():
2664
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2665
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2666
                    num_channels=32, num_filters=2, filter_size=3)
2667 2668
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2669 2670 2671
    """

    def __init__(self,
2672
                 num_channels,
2673
                 num_filters,
2674
                 filter_size,
2675 2676 2677 2678 2679 2680 2681 2682
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2683 2684 2685
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2686 2687 2688
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2689
        self._act = act
2690
        self._groups = groups
2691
        self._num_channels = num_channels
2692 2693 2694 2695 2696 2697 2698
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2699
        self._dtype = dtype
2700

2701 2702 2703
        if (self._num_channels == self._groups
                and self._num_filters == self._num_channels
                and not self._use_cudnn):
2704
            self._op_type = 'depthwise_conv2d_transpose'
2705 2706
        else:
            self._op_type = 'conv2d_transpose'
2707 2708 2709 2710 2711

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2712 2713
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2714 2715 2716

        if self._output_size is None:
            self._output_size = []
2717 2718 2719 2720 2721 2722 2723 2724
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
                    self._output_size)
            else:
                self._output_size = utils.convert_to_list(
                    self._output_size, 2, 'output_size')
        elif isinstance(self._output_size, int):
2725 2726
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
        elif isinstance(self._output_size, Variable):
            check_dtype(self._output_size.dtype, 'output_size',
                        ['int32', 'int64'], 'Conv2DTranspose')
            if len(self._output_size.shape) == 1 and (
                    self._output_size.shape[0] == 1
                    or self._output_size.shape[0] == 2):
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
                    "output_size must contain one or two integers.")
2738
        else:
2739
            raise ValueError("output_size should be list or int or Tensor")
2740 2741
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2742
        filter_shape = [self._num_channels, self._num_filters // self._groups
2743 2744
                        ] + self._filter_size

2745 2746 2747
        self.weight = self.create_parameter(dtype=self._dtype,
                                            shape=filter_shape,
                                            attr=self._param_attr)
2748

2749 2750 2751 2752
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
2753

2754
    def forward(self, input):
J
Jiabin Yang 已提交
2755
        if _non_static_mode():
2756
            op = getattr(_legacy_C_ops, self._op_type)
2757 2758 2759 2760 2761
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
2762 2763 2764 2765
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               act=self._act)
2766

2767 2768 2769 2770
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2781 2782
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
2783 2784 2785 2786
        self._helper.append_op(type=self._op_type,
                               inputs=inputs,
                               outputs={'Output': pre_bias},
                               attrs=attrs)
2787

2788
        if self.bias is not None:
2789 2790
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
2791 2792 2793 2794 2795 2796 2797
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
2798 2799 2800 2801
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2802 2803 2804 2805 2806 2807 2808 2809 2810
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2811
    Parameters:
L
lujun 已提交
2812
        name_scope(str): The name of this class.
2813
        num_filters (int): number of filters.
L
lujun 已提交
2814 2815 2816
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2829 2830 2831 2832
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2846
        assert not _non_static_mode(
2847
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2848 2849 2850 2851 2852 2853 2854
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2855
        self._act = act
2856

2857
    def _build_once(self, input):
2858 2859
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2860 2861 2862
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=filter_shape,
                                            dtype=self._dtype)
2863

2864 2865 2866 2867
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
2868

2869 2870
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
        self._helper.append_op(type='sequence_conv',
                               inputs={
                                   'X': [input],
                                   'Filter': [self.weight],
                               },
                               outputs={"Out": pre_bias},
                               attrs={
                                   'contextStride': self._filter_stride,
                                   'contextStart': -int(self._filter_size // 2),
                                   'contextLength': self._filter_size
                               })
2882

2883
        if self.bias is not None:
2884 2885
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
2886 2887 2888 2889 2890 2891 2892
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
2893 2894 2895 2896
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2897 2898 2899


class RowConv(layers.Layer):
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2918
    Parameters:
L
lujun 已提交
2919
        name_scope(str): The name of this class.
2920 2921 2922
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2923 2924
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2925

2926 2927 2928
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2929
    Returns:
L
lujun 已提交
2930 2931
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2947 2948 2949 2950 2951
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2952
        assert not _non_static_mode(
2953
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2954 2955 2956 2957 2958
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2959
    def _build_once(self, input):
L
lujun 已提交
2960 2961
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2962 2963 2964 2965
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=filter_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
L
lujun 已提交
2966 2967 2968

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
2969 2970 2971 2972 2973 2974
        self._helper.append_op(type='row_conv',
                               inputs={
                                   'X': [input],
                                   'Filter': [self.weight]
                               },
                               outputs={'Out': [out]})
L
lujun 已提交
2975 2976 2977 2978 2979
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2980 2981 2982 2983
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2984 2985 2986 2987 2988 2989
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2990
        channels(int): The number of channels of input.
2991 2992 2993 2994 2995 2996 2997 2998 2999
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
3000
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
3014
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
3015
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
3016 3017 3018 3019

    """

    def __init__(self,
3020
                 channels,
L
lujun 已提交
3021 3022 3023 3024 3025
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
3026 3027 3028
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
3029 3030 3031
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
3032
        self._channels = channels
L
lujun 已提交
3033 3034
        self._groups = groups
        self._act = act
3035
        self._dtype = dtype
L
lujun 已提交
3036 3037 3038
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

3039
        param_shape = [self._channels]
L
lujun 已提交
3040

3041 3042 3043 3044
        self.weight = self.create_parameter(attr=self._param_attr or False,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            default_initializer=Constant(1.0))
3045

3046 3047 3048 3049
        self.bias = self.create_parameter(attr=self._bias_attr or False,
                                          shape=param_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
3050 3051

    def forward(self, input):
3052 3053 3054 3055
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
3056
        if in_dygraph_mode():
3057 3058
            out = _C_ops.group_norm(input, self.weight, self.bias,
                                    self._epsilon, self._groups, "NCHW")
3059

3060 3061 3062
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
3063
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
3064 3065
            out, _, _ = _legacy_C_ops.group_norm(input, self.weight, self.bias,
                                                 mean_out, variance_out, *attrs)
3066 3067

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
            self._helper.append_op(type="group_norm",
                                   inputs=inputs,
                                   outputs={
                                       "Y": group_norm_out,
                                       "Mean": mean_out,
                                       "Variance": variance_out,
                                   },
                                   attrs={
                                       "epsilon": self._epsilon,
                                       "groups": self._groups
                                   })
J
Jiabin Yang 已提交
3090 3091

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3092 3093 3094


class SpectralNorm(layers.Layer):
3095
    r"""
3096 3097
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3108
    :attr:`power_iters` should be a positive integer, do following
3109 3110 3111 3112
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3113
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3114

3115
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3116 3117 3118 3119 3120 3121 3122 3123

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3124
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3125 3126 3127 3128


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3129
    Parameters:
3130
        weight_shape(list or tuple): The shape of weight parameter.
3131 3132 3133 3134
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3135
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3136 3137

    Returns:
3138
        None
3139 3140 3141 3142

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3143 3144
            import paddle
            x = paddle.rand((2,8,32,32))
3145

C
Chen Long 已提交
3146 3147 3148 3149
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3150 3151 3152

    """

3153 3154 3155 3156 3157 3158 3159
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3160 3161 3162
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3163
        self._dtype = dtype
L
lujun 已提交
3164

3165
        self._weight_shape = list(weight_shape)
3166 3167 3168 3169 3170 3171
        assert np.prod(self._weight_shape) > 0,\
            "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), \
            ("The input `dim` should be less than the "
            "length of `weight_shape`, but received dim="
            "{}".format(dim))
3172 3173
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3174

3175 3176 3177 3178 3179
        self.weight_u = self.create_parameter(attr=ParamAttr(),
                                              shape=[h],
                                              dtype=self._dtype,
                                              default_initializer=Normal(
                                                  0., 1.))
3180
        self.weight_u.stop_gradient = True
L
lujun 已提交
3181

3182 3183 3184 3185 3186
        self.weight_v = self.create_parameter(attr=ParamAttr(),
                                              shape=[w],
                                              dtype=self._dtype,
                                              default_initializer=Normal(
                                                  0., 1.))
3187
        self.weight_v.stop_gradient = True
L
lujun 已提交
3188 3189

    def forward(self, weight):
3190 3191 3192 3193
        if in_dygraph_mode():
            return _C_ops.spectral_norm(weight, self.weight_u, self.weight_v,
                                        self._dim, self._power_iters, self._eps)

3194 3195
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3196
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3197
        out = self._helper.create_variable_for_type_inference(self._dtype)
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
        self._helper.append_op(type="spectral_norm",
                               inputs=inputs,
                               outputs={
                                   "Out": out,
                               },
                               attrs={
                                   "dim": self._dim,
                                   "power_iters": self._power_iters,
                                   "eps": self._eps,
                               })
L
lujun 已提交
3208 3209 3210 3211 3212

        return out


class TreeConv(layers.Layer):
3213
    """
3214 3215 3216 3217 3218 3219 3220 3221
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
3222

3223
    Parameters:
3224
        feature_size(int): last dimension of nodes_vector.
3225 3226 3227 3228 3229 3230 3231
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3232
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3233

3234 3235
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3236

3237
        **bias** (Parameter or None): the learnable bias of this layer.
3238

3239 3240
    Returns:
        None
L
lujun 已提交
3241

3242
    Examples:
L
lujun 已提交
3243

3244
        .. code-block:: python
3245

3246 3247
          import paddle.fluid as fluid
          import numpy
3248

3249 3250 3251 3252
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3253
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3254
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3255 3256
    """

L
lujun 已提交
3257
    def __init__(self,
3258
                 feature_size,
L
lujun 已提交
3259 3260 3261 3262 3263 3264
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3265 3266 3267
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3268
        self._name = name
3269
        self._feature_size = feature_size
L
lujun 已提交
3270 3271 3272 3273 3274 3275
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3276 3277
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3278
        if self._bias_attr:
3279 3280 3281 3282 3283 3284 3285 3286
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[self._num_filters],
                                              dtype=self._dtype,
                                              is_bias=True)
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=w_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
L
lujun 已提交
3287 3288

    def forward(self, nodes_vector, edge_set):
3289 3290
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3291
        if self._name:
3292 3293 3294
            out = self.create_variable(name=self._name,
                                       dtype=self._dtype,
                                       persistable=False)
L
lujun 已提交
3295 3296 3297
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
        self._helper.append_op(type='tree_conv',
                               inputs={
                                   'NodesVector': nodes_vector,
                                   'EdgeSet': edge_set,
                                   'Filter': self.weight
                               },
                               outputs={
                                   'Out': out,
                               },
                               attrs={'max_depth': self._max_depth})
L
lujun 已提交
3308 3309 3310
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3311 3312 3313 3314 3315 3316 3317
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [out],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_activation]},
                                   attrs={'axis': 1})
L
lujun 已提交
3318 3319 3320
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
3332

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3344
          inp_np = paddle.to_tensor(inp_np)
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3356 3357 3358
        out = paddle.tensor.manipulation.flatten(input,
                                                 start_axis=self.start_axis,
                                                 stop_axis=self.stop_axis)
3359
        return out