box_wrapper.cc 14.2 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

H
hutuxian 已提交
15
#ifdef PADDLE_WITH_BOX_PS
H
hutuxian 已提交
16
#include "paddle/fluid/framework/fleet/box_wrapper.h"
H
hutuxian 已提交
17
#include <algorithm>
H
hutuxian 已提交
18 19 20 21 22 23 24 25 26 27
#include <ctime>
#include <memory>
#include <numeric>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/platform/gpu_info.h"

namespace paddle {
namespace framework {

std::shared_ptr<BoxWrapper> BoxWrapper::s_instance_ = nullptr;
H
hutuxian 已提交
28 29
cudaStream_t BoxWrapper::stream_list_[8];
std::shared_ptr<boxps::BoxPSBase> BoxWrapper::boxps_ptr_ = nullptr;
H
hutuxian 已提交
30
AfsManager* BoxWrapper::afs_manager = nullptr;
H
hutuxian 已提交
31

H
hutuxian 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
void BasicAucCalculator::compute() {
  double* table[2] = {&_table[0][0], &_table[1][0]};

  double area = 0;
  double fp = 0;
  double tp = 0;

  for (int i = _table_size - 1; i >= 0; i--) {
    double newfp = fp + table[0][i];
    double newtp = tp + table[1][i];
    area += (newfp - fp) * (tp + newtp) / 2;
    fp = newfp;
    tp = newtp;
  }

  if (fp < 1e-3 || tp < 1e-3) {
    _auc = -0.5;  // which means all nonclick or click
  } else {
    _auc = area / (fp * tp);
  }

  _mae = _local_abserr / (fp + tp);
  _rmse = sqrt(_local_sqrerr / (fp + tp));
  _actual_ctr = tp / (fp + tp);
  _predicted_ctr = _local_pred / (fp + tp);
  _size = fp + tp;
H
hutuxian 已提交
58 59
}

H
hutuxian 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
void BasicAucCalculator::calculate_bucket_error() {
  double last_ctr = -1;
  double impression_sum = 0;
  double ctr_sum = 0.0;
  double click_sum = 0.0;
  double error_sum = 0.0;
  double error_count = 0;
  double* table[2] = {&_table[0][0], &_table[1][0]};
  for (int i = 0; i < _table_size; i++) {
    double click = table[1][i];
    double show = table[0][i] + table[1][i];
    double ctr = static_cast<double>(i) / _table_size;
    if (fabs(ctr - last_ctr) > kMaxSpan) {
      last_ctr = ctr;
      impression_sum = 0.0;
      ctr_sum = 0.0;
      click_sum = 0.0;
    }
    impression_sum += show;
    ctr_sum += ctr * show;
    click_sum += click;
    double adjust_ctr = ctr_sum / impression_sum;
    double relative_error =
        sqrt((1 - adjust_ctr) / (adjust_ctr * impression_sum));
    if (relative_error < kRelativeErrorBound) {
      double actual_ctr = click_sum / impression_sum;
      double relative_ctr_error = fabs(actual_ctr / adjust_ctr - 1);
      error_sum += relative_ctr_error * impression_sum;
      error_count += impression_sum;
      last_ctr = -1;
    }
  }
  _bucket_error = error_count > 0 ? error_sum / error_count : 0.0;
}

H
hutuxian 已提交
95
// Deprecated: should use BeginFeedPass & EndFeedPass
H
hutuxian 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
void BoxWrapper::FeedPass(int date,
                          const std::vector<uint64_t>& feasgin_to_box) const {
  int ret = boxps_ptr_->FeedPass(date, feasgin_to_box);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                "FeedPass failed in BoxPS."));
}

void BoxWrapper::BeginFeedPass(int date, boxps::PSAgentBase** agent) const {
  int ret = boxps_ptr_->BeginFeedPass(date, *agent);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                "BeginFeedPass failed in BoxPS."));
}

void BoxWrapper::EndFeedPass(boxps::PSAgentBase* agent) const {
  int ret = boxps_ptr_->EndFeedPass(agent);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                "EndFeedPass failed in BoxPS."));
H
hutuxian 已提交
113 114 115 116
}

void BoxWrapper::BeginPass() const {
  int ret = boxps_ptr_->BeginPass();
H
hutuxian 已提交
117 118
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                "BeginPass failed in BoxPS."));
H
hutuxian 已提交
119 120
}

121 122 123 124
void BoxWrapper::SetTestMode(bool is_test) const {
  boxps_ptr_->SetTestMode(is_test);
}

125 126
void BoxWrapper::EndPass(bool need_save_delta) const {
  int ret = boxps_ptr_->EndPass(need_save_delta);
H
hutuxian 已提交
127 128
  PADDLE_ENFORCE_EQ(
      ret, 0, platform::errors::PreconditionNotMet("EndPass failed in BoxPS."));
H
hutuxian 已提交
129 130 131 132 133 134 135
}

void BoxWrapper::PullSparse(const paddle::platform::Place& place,
                            const std::vector<const uint64_t*>& keys,
                            const std::vector<float*>& values,
                            const std::vector<int64_t>& slot_lengths,
                            const int hidden_size) {
H
hutuxian 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
  VLOG(3) << "Begin PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_boxps_timer;
  all_timer.Start();

  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf =
      memory::AllocShared(place, total_length * sizeof(boxps::FeatureValueGpu));
  boxps::FeatureValueGpu* total_values_gpu =
      reinterpret_cast<boxps::FeatureValueGpu*>(buf->ptr());

  if (platform::is_cpu_place(place)) {
H
hutuxian 已提交
149 150
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in PaddleBox now."));
H
hutuxian 已提交
151 152 153
  } else if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
154
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
H
hutuxian 已提交
155 156 157
    LoDTensor& total_keys_tensor = keys_tensor[device_id];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));
H
hutuxian 已提交
158

H
hutuxian 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::AllocShared(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in BoxPS";
    pull_boxps_timer.Start();
    int ret =
        boxps_ptr_->PullSparseGPU(total_keys, total_values_gpu,
                                  static_cast<int>(total_length), device_id);
    PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                  "PullSparseGPU failed in BoxPS."));
    pull_boxps_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Please compile WITH_GPU option, because NCCL doesn't support "
        "windows."));
#endif
H
hutuxian 已提交
196
  } else {
H
hutuxian 已提交
197 198
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddleBox: PullSparse Only Support CPUPlace or CUDAPlace Now."));
H
hutuxian 已提交
199
  }
H
hutuxian 已提交
200 201 202 203 204
  all_timer.Pause();
  VLOG(1) << "PullSparse total costs: " << all_timer.ElapsedSec()
          << " s, of which BoxPS costs: " << pull_boxps_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
H
hutuxian 已提交
205 206 207 208 209 210
}

void BoxWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                const std::vector<const uint64_t*>& keys,
                                const std::vector<const float*>& grad_values,
                                const std::vector<int64_t>& slot_lengths,
H
hutuxian 已提交
211 212 213 214 215 216 217 218 219 220 221 222
                                const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_boxps_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf = memory::AllocShared(
      place, total_length * sizeof(boxps::FeaturePushValueGpu));
  boxps::FeaturePushValueGpu* total_grad_values_gpu =
      reinterpret_cast<boxps::FeaturePushValueGpu*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
H
hutuxian 已提交
223 224
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in PaddleBox now."));
H
hutuxian 已提交
225
  } else if (platform::is_gpu_place(place)) {
H
hutuxian 已提交
226
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
227
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
H
hutuxian 已提交
228 229 230 231 232 233 234 235 236 237 238
    LoDTensor& cached_total_keys_tensor = keys_tensor[device_id];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to boxps struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in BoxPS";
    push_boxps_timer.Start();
    int ret = boxps_ptr_->PushSparseGPU(
        total_keys, total_grad_values_gpu, static_cast<int>(total_length),
239
        BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId());
H
hutuxian 已提交
240 241 242 243 244 245 246
    PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                  "PushSparseGPU failed in BoxPS."));
    push_boxps_timer.Pause();
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Please compile WITH_GPU option, because NCCL doesn't support "
        "windows."));
H
hutuxian 已提交
247 248
#endif
  } else {
H
hutuxian 已提交
249 250
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddleBox: PushSparseGrad Only Support CPUPlace or CUDAPlace Now."));
H
hutuxian 已提交
251
  }
H
hutuxian 已提交
252 253 254 255 256
  all_timer.Pause();
  VLOG(1) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
          << " s, of which BoxPS cost: " << push_boxps_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
H
hutuxian 已提交
257
}
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

void BoxWrapper::GetRandomReplace(const std::vector<Record>& pass_data) {
  VLOG(0) << "Begin GetRandomReplace";
  size_t ins_num = pass_data.size();
  replace_idx_.resize(ins_num);
  for (auto& cand_list : random_ins_pool_list) {
    cand_list.ReInitPass();
  }
  std::vector<std::thread> threads;
  for (int tid = 0; tid < auc_runner_thread_num_; ++tid) {
    threads.push_back(std::thread([this, &pass_data, tid, ins_num]() {
      int start = tid * ins_num / auc_runner_thread_num_;
      int end = (tid + 1) * ins_num / auc_runner_thread_num_;
      VLOG(3) << "GetRandomReplace begin for thread[" << tid
              << "], and process [" << start << ", " << end
              << "), total ins: " << ins_num;
      auto& random_pool = random_ins_pool_list[tid];
      for (int i = start; i < end; ++i) {
        const auto& ins = pass_data[i];
        random_pool.AddAndGet(ins, replace_idx_[i]);
      }
    }));
  }
  for (int tid = 0; tid < auc_runner_thread_num_; ++tid) {
    threads[tid].join();
  }
  pass_done_semi_->Put(1);
  VLOG(0) << "End GetRandomReplace";
}

void BoxWrapper::GetRandomData(
    const std::vector<Record>& pass_data,
    const std::unordered_set<uint16_t>& slots_to_replace,
    std::vector<Record>* result) {
  VLOG(0) << "Begin GetRandomData";
  std::vector<std::thread> threads;
  for (int tid = 0; tid < auc_runner_thread_num_; ++tid) {
    threads.push_back(std::thread([this, &pass_data, tid, &slots_to_replace,
                                   result]() {
      int debug_erase_cnt = 0;
      int debug_push_cnt = 0;
      size_t ins_num = pass_data.size();
      int start = tid * ins_num / auc_runner_thread_num_;
      int end = (tid + 1) * ins_num / auc_runner_thread_num_;
      VLOG(3) << "GetRandomData begin for thread[" << tid << "], and process ["
              << start << ", " << end << "), total ins: " << ins_num;
      const auto& random_pool = random_ins_pool_list[tid];
      for (int i = start; i < end; ++i) {
        const auto& ins = pass_data[i];
        const RecordCandidate& rand_rec = random_pool.Get(replace_idx_[i]);
        Record new_rec = ins;
        for (auto it = new_rec.uint64_feasigns_.begin();
             it != new_rec.uint64_feasigns_.end();) {
          if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
            it = new_rec.uint64_feasigns_.erase(it);
            debug_erase_cnt += 1;
          } else {
            ++it;
          }
        }
        for (auto slot : slots_to_replace) {
          auto range = rand_rec.feas_.equal_range(slot);
          for (auto it = range.first; it != range.second; ++it) {
            new_rec.uint64_feasigns_.push_back({it->second, it->first});
            debug_push_cnt += 1;
          }
        }
        (*result)[i] = std::move(new_rec);
      }
      VLOG(3) << "thread[" << tid << "]: erase feasign num: " << debug_erase_cnt
              << " repush feasign num: " << debug_push_cnt;
    }));
  }
  for (int tid = 0; tid < auc_runner_thread_num_; ++tid) {
    threads[tid].join();
  }
  VLOG(0) << "End GetRandomData";
}

void BoxWrapper::AddReplaceFeasign(boxps::PSAgentBase* p_agent,
                                   int feed_pass_thread_num) {
  VLOG(0) << "Enter AddReplaceFeasign Function";
  int semi;
  pass_done_semi_->Get(semi);
  VLOG(0) << "Last Pass had updated random pool done. Begin AddReplaceFeasign";
  std::vector<std::thread> threads;
  for (int tid = 0; tid < feed_pass_thread_num; ++tid) {
    threads.push_back(std::thread([this, tid, p_agent, feed_pass_thread_num]() {
      VLOG(3) << "AddReplaceFeasign begin for thread[" << tid << "]";
      for (size_t pool_id = tid; pool_id < random_ins_pool_list.size();
           pool_id += feed_pass_thread_num) {
        auto& random_pool = random_ins_pool_list[pool_id];
        for (size_t i = 0; i < random_pool.Size(); ++i) {
          auto& ins_candidate = random_pool.Get(i);
          for (const auto& pair : ins_candidate.feas_) {
            p_agent->AddKey(pair.second.uint64_feasign_, tid);
          }
        }
      }
    }));
  }
  for (int tid = 0; tid < feed_pass_thread_num; ++tid) {
    threads[tid].join();
  }
  VLOG(0) << "End AddReplaceFeasign";
}

H
hutuxian 已提交
365 366
}  // end namespace framework
}  // end namespace paddle
H
hutuxian 已提交
367
#endif