box_wrapper.cc 9.6 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/fleet/box_wrapper.h"
#include <ctime>
#include <memory>
#include <numeric>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/platform/gpu_info.h"

namespace paddle {
namespace framework {

std::shared_ptr<BoxWrapper> BoxWrapper::s_instance_ = nullptr;
#ifdef PADDLE_WITH_BOX_PS
std::shared_ptr<paddle::boxps::BoxPSBase> BoxWrapper::boxps_ptr_ = nullptr;
#endif

int BoxWrapper::GetDate() const {
  time_t now = time(0);
  tm t;
#ifdef _WIN32
  localtime_s(&t, &now);
#else
  localtime_r(&now, &t);
#endif
  char buf[10];
  snprintf(buf, sizeof(buf), "%04d%02d%02d", (1900 + t.tm_year), (1 + t.tm_mon),
           t.tm_mday);
  return atoi(buf);
}

void BoxWrapper::FeedPass(const std::vector<uint64_t>& feasgin_to_box) const {
#ifdef PADDLE_WITH_BOX_PS
  int ret = boxps_ptr_->FeedPass(GetDate(), feasgin_to_box);
  PADDLE_ENFORCE_EQ(ret, 0, "FeedPass failed in BoxPS.");
#endif
}

void BoxWrapper::BeginPass() const {
#ifdef PADDLE_WITH_BOX_PS
  int ret = boxps_ptr_->BeginPass();
  PADDLE_ENFORCE_EQ(ret, 0, "BeginPass failed in BoxPS.");
#endif
}

void BoxWrapper::EndPass() const {
#ifdef PADDLE_WITH_BOX_PS
  int ret = boxps_ptr_->EndPass();
  PADDLE_ENFORCE_EQ(ret, 0, "EndPass failed in BoxPS.");
#endif
}

void BoxWrapper::PullSparse(const paddle::platform::Place& place,
                            const std::vector<const uint64_t*>& keys,
                            const std::vector<float*>& values,
                            const std::vector<int64_t>& slot_lengths,
                            const int hidden_size) {
#ifdef PADDLE_WITH_BOX_PS
  if (platform::is_cpu_place(place) || platform::is_gpu_place(place)) {
    int64_t total_length =
        std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
    LoDTensor total_keys_tensor;
    int64_t* total_keys =
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place);
    int64_t offset = 0;
    for (size_t i = 0; i < keys.size(); ++i) {
      if (platform::is_cpu_place(place)) {
        memory::Copy(boost::get<platform::CPUPlace>(place), total_keys + offset,
                     boost::get<platform::CPUPlace>(place), keys[i],
                     slot_lengths[i] * sizeof(uint64_t));
      } else {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
        memory::Copy(boost::get<platform::CUDAPlace>(place),
                     total_keys + offset,
                     boost::get<platform::CUDAPlace>(place), keys[i],
                     slot_lengths[i] * sizeof(uint64_t), nullptr);
#else
        PADDLE_THROW(
            "Please compile WITH_GPU option, and NCCL doesn't support "
            "windows.");
#endif
      }
      offset += slot_lengths[i];
    }
    PADDLE_ENFORCE_EQ(offset, total_length,
                      "BoxWrapper::PullSparse: total feasign keys length "
                      "should be equal to the sum of length of all input "
                      "tensors.");

    // Space allocation for FeatureValue is left for boxps
    paddle::boxps::FeatureValue* total_values;
    if (platform::is_cpu_place(place)) {
      int ret = boxps_ptr_->PullSparseCPU(
          reinterpret_cast<uint64_t*>(total_keys), &total_values,
          static_cast<int>(total_length));
      PADDLE_ENFORCE_EQ(ret, 0, "PullSparseCPU failed in BoxPS.");
    } else {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
      int ret = boxps_ptr_->PullSparseGPU(
          reinterpret_cast<uint64_t*>(total_keys), &total_values,
          static_cast<int>(total_length),
          boost::get<platform::CUDAPlace>(place).GetDeviceId());
      PADDLE_ENFORCE_EQ(ret, 0, "PullSparseGPU failed in BoxPS.");
#endif
    }

    offset = 0;
    for (size_t i = 0; i < values.size(); ++i) {
      int64_t fea_num = slot_lengths[i];
      for (auto j = 0; j < fea_num; ++j) {
        // Copy the emb from BoxPS to paddle tensor. Since 'show','click','emb'
        // are continuous in memory, so we copy here using the 'show' address
        if (platform::is_cpu_place(place)) {
          memory::Copy(
              boost::get<platform::CPUPlace>(place),
              values[i] + j * hidden_size,
              boost::get<platform::CPUPlace>(place),
              reinterpret_cast<float*>(&((total_values + offset)->show)),
              sizeof(float) * hidden_size);
        } else {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
          memory::Copy(
              boost::get<platform::CUDAPlace>(place),
              values[i] + j * hidden_size,
              boost::get<platform::CUDAPlace>(place),
              reinterpret_cast<float*>(&((total_values + offset)->show)),
              sizeof(float) * hidden_size, nullptr);
#endif
        }
        ++offset;
      }
    }
    PADDLE_ENFORCE_EQ(offset, total_length,
                      "BoxWrapper::PullSparse: total emb values length should "
                      "be equal to the sum of length of all input tensors.");

  } else {
    PADDLE_THROW(
        "PaddleBox: PullSparse Only Support CPUPlace and CUDAPlace Now.");
  }
#endif
}

void BoxWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                const std::vector<const uint64_t*>& keys,
                                const std::vector<const float*>& grad_values,
                                const std::vector<int64_t>& slot_lengths,
                                const int hidden_size) {
#ifdef PADDLE_WITH_BOX_PS
  if (platform::is_cpu_place(place) || platform::is_gpu_place(place)) {
    int64_t total_length =
        std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
    LoDTensor total_keys_tensor;
    int64_t* total_keys =
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place);
    int64_t offset = 0;
    for (size_t i = 0; i < keys.size(); ++i) {
      if (platform::is_cpu_place(place)) {
        memory::Copy(boost::get<platform::CPUPlace>(place), total_keys + offset,
                     boost::get<platform::CPUPlace>(place), keys[i],
                     slot_lengths[i] * sizeof(uint64_t));
      } else {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
        memory::Copy(boost::get<platform::CUDAPlace>(place),
                     total_keys + offset,
                     boost::get<platform::CUDAPlace>(place), keys[i],
                     slot_lengths[i] * sizeof(uint64_t), nullptr);
#else
        PADDLE_THROW(
            "Please compile WITH_GPU option, and for now NCCL doesn't support "
            "windows.");
#endif
      }
      offset += slot_lengths[i];
    }
    PADDLE_ENFORCE_EQ(offset, total_length,
                      "BoxWrapper::PushSparseGrad: total feasign keys length "
                      "should be equal to the sum of length of all input "
                      "tensors.");
    auto buf = memory::AllocShared(
        place, total_length * sizeof(paddle::boxps::FeaturePushValue));
    paddle::boxps::FeaturePushValue* total_grad_values =
        reinterpret_cast<paddle::boxps::FeaturePushValue*>(buf->ptr());
    offset = 0;
    for (size_t i = 0; i < grad_values.size(); ++i) {
      int64_t fea_num = slot_lengths[i];
      for (auto j = 0; j < fea_num; ++j) {
        // Copy the emb grad from paddle tensor to BoxPS. Since
        // 'show','click','emb' are continuous in memory, so we copy here using
        // the 'show' address
        if (platform::is_cpu_place(place)) {
          memory::Copy(
              boost::get<platform::CPUPlace>(place),
              reinterpret_cast<float*>(&((total_grad_values + offset)->show)),
              boost::get<platform::CPUPlace>(place),
              grad_values[i] + j * hidden_size, sizeof(float) * hidden_size);
        } else {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
          memory::Copy(
              boost::get<platform::CUDAPlace>(place),
              reinterpret_cast<float*>(&((total_grad_values + offset)->show)),
              boost::get<platform::CUDAPlace>(place),
              grad_values[i] + j * hidden_size, sizeof(float) * hidden_size,
              nullptr);
#endif
        }
        ++offset;
      }
    }
    PADDLE_ENFORCE_EQ(offset, total_length,
                      "BoxWrapper::PushSparseGrad: total emb grad values "
                      "length should be equal to the sum of length of all "
                      "input tensors.");
    if (platform::is_cpu_place(place)) {
      int ret = boxps_ptr_->PushSparseCPU(
          reinterpret_cast<uint64_t*>(total_keys), total_grad_values,
          static_cast<int>(total_length));
      PADDLE_ENFORCE_EQ(ret, 0, "PushSparseCPU failed in BoxPS.");
    } else {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
      int ret = boxps_ptr_->PushSparseGPU(
          reinterpret_cast<uint64_t*>(total_keys), total_grad_values,
          static_cast<int>(total_length),
          boost::get<platform::CUDAPlace>(place).GetDeviceId());
      PADDLE_ENFORCE_EQ(ret, 0, "PushSparseGPU failed in BoxPS.");
#endif
    }
  } else {
    PADDLE_THROW(
        "PaddleBox: PushSparse Only Support CPUPlace and CUDAPlace Now.");
  }
#endif
}
}  // end namespace framework
}  // end namespace paddle