distribute_transpiler.py 45.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18 19 20 21

import distributed_splitter as splitter
import framework
from framework import Program, default_main_program, Variable
22
from . import core
23 24 25 26

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
27 28


T
typhoonzero 已提交
29 30 31 32 33 34
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
35

T
typhoonzero 已提交
36 37
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
38 39


40
class UnionFind(object):
41
    """ Union-find data structure.
42

43
    Union-find is a data structure that keeps track of a set of elements partitioned
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
95 96 97 98 99
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
100
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
101 102
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
103

T
typhoonzero 已提交
104 105
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
106 107
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
108 109
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
128
        # update split_count after aligning
T
typhoonzero 已提交
129 130 131 132 133 134 135 136 137
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
138 139 140 141
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
142
                  trainer_id,
T
done  
typhoonzero 已提交
143 144 145
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
146
                  split_method=splitter.round_robin):
T
done  
typhoonzero 已提交
147
        """
148 149
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
150
            to do parameter optimization. And the optimization graph will be put
151
            into a parameter server program.
T
done  
typhoonzero 已提交
152

153
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
154 155
            parameter servers.

T
typhoonzero 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
            Steps to transpile trainer:
            1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
            2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
            3. modify trainer program add split_op to each grad variable.
            4. append send_op to send splited variables to server and fetch
               params(splited blocks or origin param) from server.
            5. append concat_op to merge splited blocks to update local weights.

            Steps to transpile pserver:
            1. create new program for parameter server.
            2. create params and grad variables that assigned to current server instance.
            3. create a sub-block in the server side program
            4. append ops that should run on current server instance.
            5. add listen_and_serv op

T
done  
typhoonzero 已提交
171
            :param optimize_ops: op list of optimization, should be the
172
                                    return value of Optimizer.minimize
T
done  
typhoonzero 已提交
173
            :type optimize_ops: list
T
typhoonzero 已提交
174 175 176 177
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
T
typhoonzero 已提交
178
            :param program: program to transpile, default is default_main_program
T
typhoonzero 已提交
179
            :type program: Program
T
done  
typhoonzero 已提交
180 181
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
182 183 184 185 186
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
187
        """
T
typhoonzero 已提交
188
        assert (callable(split_method))
T
done  
typhoonzero 已提交
189 190
        if program is None:
            program = default_main_program()
191 192
        self.origin_program = program
        self.trainer_num = trainers
T
typhoonzero 已提交
193
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
194 195 196 197
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
198
        pserver_endpoints = pservers.split(",")
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        self.pserver_endpoints = pserver_endpoints

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
222

223 224
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
225 226
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != framework.grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
251 252
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
253 254
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
255
        grad_var_mapping = self._append_split_op(program, grad_blocks)
256 257 258 259
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
260
        send_inputs = []
T
typhoonzero 已提交
261
        send_outputs = []
T
typhoonzero 已提交
262 263 264 265 266 267
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
268 269
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
270
        eplist = split_method(send_inputs, pserver_endpoints)
271
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
272 273 274 275 276 277 278 279
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
280

T
typhoonzero 已提交
281
        rpc_client_var = program.global_block().create_var(
282
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
283
            persistable=True,
T
typhoonzero 已提交
284
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
285

286
        # create send_op
T
typhoonzero 已提交
287
        program.global_block().append_op(
T
typhoonzero 已提交
288 289
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
290 291
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
292
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
293
                   "epmap": eplist})
294
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
295
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
296 297
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
298
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
299
            program.global_block().append_op(
T
typhoonzero 已提交
300
                type="concat",
T
typhoonzero 已提交
301
                inputs={"X": splited_var},
T
typhoonzero 已提交
302
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
303
                attrs={"axis": 0})
T
typhoonzero 已提交
304

305 306 307 308 309 310
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
311 312
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
313 314
        self.origin_program.global_block().delete_ops(self.optimize_ops)
        self.origin_program.sync_with_cpp()
315
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
316 317
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
318 319 320 321

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
322
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
323 324 325 326 327 328
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
329
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
330 331 332 333 334 335 336 337
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
338 339 340 341 342 343

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
344 345 346 347 348 349 350 351 352
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
353 354
            if self.trainer_num > 1:
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
355 356 357 358 359 360 361 362 363
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
364

T
typhoonzero 已提交
365 366 367
        # step3
        optimize_block = pserver_program.create_block(0)
        # step 4
368
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
369 370 371
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
372
        # step 4.2
T
typhoonzero 已提交
373 374 375 376 377 378 379 380
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 4.3
        # Iterate through the ops, and if an op and the optimize ops
381
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
382
        # append it into the sub program.
T
typhoonzero 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
            if op.type == "scale":
                for in_name in op.input_arg_names:
                    if in_name.startswith("beta1_pow_acc") or\
                        in_name.startswith("beta2_pow_acc"):
                        global_ops.append(op)

        def __append_optimize_op__(op, block):
            if self._is_opt_op(op):
                self._append_pserver_ops(block, op, endpoint,
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

412
        append_block = optimize_block
413
        # append lr decay ops to the child block if exists
414 415 416 417 418 419 420
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
            for _, op in enumerate(lr_ops):
                self._append_pserver_non_opt_ops(append_block, op)

            append_block = pserver_program.create_block(append_block.idx)

T
typhoonzero 已提交
421
        # append op to the current block
422
        per_opt_block = append_block
T
typhoonzero 已提交
423
        for idx, opt_op in enumerate(opt_op_on_pserver):
T
typhoonzero 已提交
424 425 426 427 428
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
                if ufind.is_connected(op, opt_op) and \
                    op not in global_ops:
                    __append_optimize_op__(op, per_opt_block)
T
typhoonzero 已提交
429 430
            if idx == len(opt_op_on_pserver) - 1 and global_ops:
                per_opt_block = pserver_program.create_block(append_block.idx)
T
typhoonzero 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443

        # append global ops
        for glb_op in global_ops:
            __append_optimize_op__(glb_op, per_opt_block)

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
            self._create_table_optimize_block(pserver_index, pserver_program,
                                              append_block)
            prefetch_block = self._create_prefetch_block(
                pserver_index, pserver_program, optimize_block)

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
461 462 463 464 465 466 467 468
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
                "OptimizeBlock": optimize_block,
                "endpoint": endpoint,
469 470
                "Fanin": self.trainer_num,
                "PrefetchBlock": prefetch_block
T
typhoonzero 已提交
471
            })
472

T
typhoonzero 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
497
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
                    program.global_block().delete_ops([op])
                    program.sync_with_cpp()
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
        table_grad_name = framework.grad_var_name(self.table_name)
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type=LOOKUP_TABLE_TYPE,
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
                                     append_block):
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
        param_var = _clone_var(
            pserver_program.global_block(),
            self.origin_program.global_block().vars[self.table_name])
        grad_var = _clone_var(
            pserver_program.global_block(),
            self.origin_program.global_block().vars[framework.grad_var_name(
                self.table_name)],
            persistable=False)

        # create grad vars in pserver program
        table_grad_var = self.table_param_grad[1]
        table_grad_list = [
            pserver_program.global_block().create_var(
                name="%s.trainer_%d.pserver_%d" %
                (table_grad_var.name, index, pserver_index),
                type=table_grad_var.type,
                shape=table_grad_var.shape,
                dtype=table_grad_var.dtype) for index in range(self.trainer_num)
        ]

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
        table_opt_block = pserver_program.create_block(append_block.idx)
        # only support sgd now
        assert table_opt_op.type == "sgd"

        # append sum op for table_grad_list
        table_opt_block.append_op(
            type="sum",
            inputs={"X": table_grad_list},
            outputs={"Out": [grad_var]})

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

T
typhoonzero 已提交
721 722 723 724 725 726
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
727
        Create vars for each split.
T
typhoonzero 已提交
728 729
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
730
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
731
        """
T
typhoonzero 已提交
732
        block_map = dict()
T
typhoonzero 已提交
733
        var_mapping = dict()
T
typhoonzero 已提交
734 735 736 737 738 739
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
740
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
741
            if len(splited) == 1:
T
typhoonzero 已提交
742 743 744 745 746 747 748 749 750
                if add_trainer_suffix:
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
751
                continue
T
typhoonzero 已提交
752 753

            var_mapping[varname] = []
T
typhoonzero 已提交
754 755 756 757
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
758

T
typhoonzero 已提交
759
            for i, block in enumerate(splited):
T
typhoonzero 已提交
760
                size = block[1]
T
typhoonzero 已提交
761 762 763 764
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
765 766 767 768 769 770 771
                new_var_name = ""
                if add_trainer_suffix:
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
772
                var = program.global_block().create_var(
T
typhoonzero 已提交
773 774
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
775
                    dtype=orig_var.dtype,
776
                    type=orig_var.type,
T
typhoonzero 已提交
777
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
778
                var_mapping[varname].append(var)
T
typhoonzero 已提交
779
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
780
        return var_mapping
T
done  
typhoonzero 已提交
781

782 783 784 785 786 787 788 789 790 791 792
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
793 794 795 796 797 798 799
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
800
            persistable=persistable)
T
done  
typhoonzero 已提交
801

T
typhoonzero 已提交
802
    def _append_split_op(self, program, gradblocks):
803
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
804
        add_suffix = False
805
        if self.trainer_num > 1:
T
typhoonzero 已提交
806
            add_suffix = True
T
typhoonzero 已提交
807
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
808
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
809
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
810 811
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
812
                continue
T
typhoonzero 已提交
813
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
814
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
815 816 817 818 819 820 821 822
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
823
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
824 825 826 827 828 829 830 831 832 833 834 835
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
836
        return var_mapping
T
done  
typhoonzero 已提交
837

T
typhoonzero 已提交
838 839 840 841
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
842
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
865 866 867 868 869
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
870 871
        else:
            orig_var_name = varname
T
typhoonzero 已提交
872 873
        return orig_var_name

874 875
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
                            origin_program):
876
        program = optimize_block.program
T
typhoonzero 已提交
877
        pserver_block = program.global_block()
T
typhoonzero 已提交
878
        new_inputs = dict()
T
typhoonzero 已提交
879 880
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
881
        for key in opt_op.input_names:
T
typhoonzero 已提交
882 883 884
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
885
                    if same_or_split_var(
T
typhoonzero 已提交
886 887
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
888 889 890 891 892 893
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
894 895
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
896
                if self.trainer_num > 1:
T
typhoonzero 已提交
897
                    vars2merge = []
898
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
899 900 901 902
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

903
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
904 905 906
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
907
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
908 909 910 911 912
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
913
                            attrs={"scale": 1.0 / float(self.trainer_num)})
T
typhoonzero 已提交
914 915 916 917 918
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
919
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
920 921 922 923
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
924
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
925
                    name=param_block.name,
T
typhoonzero 已提交
926
                    persistable=True,
T
typhoonzero 已提交
927 928 929
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
930
            elif key == "LearningRate":
931
                # learning rate variable has already be created by non-optimize op,
932
                # don't create it once again.
933 934 935 936 937 938 939 940 941 942 943
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
944

T
typhoonzero 已提交
945
        for key in opt_op.input_names:
946 947
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
948
                continue
949
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
950 951 952 953
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
954
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
955 956 957 958 959
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
960

961
        # change output's ParamOut variable
962 963
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
964
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
965

966
        optimize_block.append_op(
T
typhoonzero 已提交
967 968
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
969
            outputs=outputs,
T
typhoonzero 已提交
970 971
            attrs=opt_op.attrs)

972 973
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
974
        # Append the ops for parameters that do not need to be optimized/updated
975 976
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
977 978 979 980
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
981
            for var in varlist:
982 983
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
984 985 986 987 988
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

989 990
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
991

992 993 994 995 996
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
997
                program.global_block().clone_variable(var)
998

999
        optimize_block.append_op(
T
typhoonzero 已提交
1000
            type=opt_op.type,
T
typhoonzero 已提交
1001 1002
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1003 1004
            attrs=opt_op.attrs)

1005 1006 1007 1008
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1022 1023
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1024
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1025
        op2_output_names = op2.desc.output_arg_names()
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1045
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1046 1047
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1048 1049 1050 1051 1052 1053 1054
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1055
        if op.input("Param")[0] in param_names:
1056 1057 1058
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1059
                param = op.input("Param")[0]
T
typhoonzero 已提交
1060
                if same_or_split_var(n, param) and n != param:
1061 1062 1063
                    return True
            return False

T
typhoonzero 已提交
1064
    def _get_input_map_from_op(self, varmap, op):
1065
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1078
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1100
        block = self.origin_program.global_block()
1101 1102 1103 1104 1105
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1119 1120
                    # we only need to append op for once
                    break
1121
        return lr_ops