distribute_transpiler.py 33.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16
import framework
17
from framework import Program, default_main_program, default_startup_program, Parameter, Variable
T
done  
typhoonzero 已提交
18 19
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
23
import debuger
T
done  
typhoonzero 已提交
24 25


T
typhoonzero 已提交
26 27 28 29 30 31
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
32

T
typhoonzero 已提交
33 34
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
class UnionFind(object):
    """ Union-find data struct.
    
    Union-find is a data struct that keeps track of a set of elements partitioned
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


88 89 90 91
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
92 93 94 95 96
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
97
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
98 99
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
100

T
typhoonzero 已提交
101 102
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
103 104
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
123
        # update split_count after aligning
T
typhoonzero 已提交
124 125 126 127 128 129 130 131 132
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
133 134 135 136
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
137
                  trainer_id,
T
done  
typhoonzero 已提交
138 139 140 141 142
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
143 144
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
145
            to do parameter optimization. And the optimization graph will be put
146
            into a parameter server program.
T
done  
typhoonzero 已提交
147

148
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
149 150
            parameter servers.

T
typhoonzero 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
            Steps to transpile trainer:
            1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
            2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
            3. modify trainer program add split_op to each grad variable.
            4. append send_op to send splited variables to server and fetch
               params(splited blocks or origin param) from server.
            5. append concat_op to merge splited blocks to update local weights.

            Steps to transpile pserver:
            1. create new program for parameter server.
            2. create params and grad variables that assigned to current server instance.
            3. create a sub-block in the server side program
            4. append ops that should run on current server instance.
            5. add listen_and_serv op

T
done  
typhoonzero 已提交
166
            :param optimize_ops: op list of optimization, should be the
167
                                    return value of Optimizer.minimize
T
done  
typhoonzero 已提交
168
            :type optimize_ops: list
T
typhoonzero 已提交
169 170 171 172
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
T
typhoonzero 已提交
173
            :param program: program to transpile, default is default_main_program
T
typhoonzero 已提交
174
            :type program: Program
T
done  
typhoonzero 已提交
175 176
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
177 178 179 180 181
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
182
        """
T
typhoonzero 已提交
183
        assert (callable(split_method))
T
done  
typhoonzero 已提交
184 185
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
186
        self.program = program
T
done  
typhoonzero 已提交
187
        self.trainers = trainers
T
typhoonzero 已提交
188
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
189 190 191 192
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
193
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
194 195

        # step1
T
typhoonzero 已提交
196 197 198 199
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
200
        # step2
T
typhoonzero 已提交
201
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
202 203
        # step3
        send_inputs = []
T
typhoonzero 已提交
204
        send_outputs = []
T
typhoonzero 已提交
205 206 207 208
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
209 210
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
211 212 213
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
214 215
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
216
        eplist = split_method(send_inputs, pserver_endpoints)
217
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
218 219 220 221 222 223 224 225
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
226

T
typhoonzero 已提交
227 228
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
T
typhoonzero 已提交
229
            persistable=True,
T
typhoonzero 已提交
230
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
231

232
        # create send_op
T
typhoonzero 已提交
233
        program.global_block().append_op(
T
typhoonzero 已提交
234 235
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
236 237
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
238
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
239 240 241
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
242 243
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
244
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
245
            program.global_block().append_op(
T
typhoonzero 已提交
246
                type="concat",
T
typhoonzero 已提交
247
                inputs={"X": splited_var},
T
typhoonzero 已提交
248
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
249
                attrs={"axis": 0})
T
typhoonzero 已提交
250

T
typhoonzero 已提交
251 252 253
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
        self.program.global_block().delete_ops(self.optimize_ops)
254 255
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
        self.program.__str__()
T
typhoonzero 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        return self.program

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
        # step2
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            pserver_program.global_block().create_var(
                name=orig_var_name,
                persistable=True,
282
                type=v.type,
T
typhoonzero 已提交
283 284 285 286 287 288
                dtype=v.dtype,
                shape=v.shape)
            for trainer_id in xrange(self.trainers):
                var = pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (orig_var_name, trainer_id),
                    persistable=False,
289
                    type=v.type,
T
typhoonzero 已提交
290 291 292
                    dtype=v.dtype,
                    shape=v.shape)
                recv_inputs.append(var)
293

T
typhoonzero 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        # step3
        optimize_block = pserver_program.create_block(0)
        # step 4
        # Create a union-find data struct from optimize ops,
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
        # step 4.2 
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 4.3
        # Iterate through the ops, and if an op and the optimize ops
        # which located on current pserver are in one set, then 
        # append it into the sub program.
T
typhoonzero 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
            if op.type == "scale":
                for in_name in op.input_arg_names:
                    if in_name.startswith("beta1_pow_acc") or\
                        in_name.startswith("beta2_pow_acc"):
                        global_ops.append(op)

        def __append_optimize_op__(op, block):
            if self._is_opt_op(op):
                self._append_pserver_ops(block, op, endpoint,
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

341 342 343 344 345 346 347 348 349
        append_block = optimize_block
        # append lr decay ops to the child block if exits
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
            for _, op in enumerate(lr_ops):
                self._append_pserver_non_opt_ops(append_block, op)

            append_block = pserver_program.create_block(append_block.idx)

T
typhoonzero 已提交
350
        # append op to the current block
351
        per_opt_block = append_block
T
typhoonzero 已提交
352 353 354 355 356 357
        for _, opt_op in enumerate(opt_op_on_pserver):
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
                if ufind.is_connected(op, opt_op) and \
                    op not in global_ops:
                    __append_optimize_op__(op, per_opt_block)
358
            per_opt_block = pserver_program.create_block(append_block.idx)
T
typhoonzero 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371

        # append global ops
        for glb_op in global_ops:
            __append_optimize_op__(glb_op, per_opt_block)

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

T
typhoonzero 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
                "OptimizeBlock": optimize_block,
                "endpoint": endpoint,
                "Fanin": self.trainers
            })
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
        """
T
typhoonzero 已提交
452
        block_map = dict()
T
typhoonzero 已提交
453
        var_mapping = dict()
T
typhoonzero 已提交
454 455 456 457 458 459
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
460
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
461
            if len(splited) == 1:
T
typhoonzero 已提交
462 463 464 465 466 467 468 469 470
                if add_trainer_suffix:
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
471
                continue
T
typhoonzero 已提交
472 473

            var_mapping[varname] = []
T
typhoonzero 已提交
474 475 476 477
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
478

T
typhoonzero 已提交
479
            for i, block in enumerate(splited):
T
typhoonzero 已提交
480
                size = block[1]
T
typhoonzero 已提交
481 482 483 484
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
485 486 487 488 489 490 491
                new_var_name = ""
                if add_trainer_suffix:
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
492
                var = program.global_block().create_var(
T
typhoonzero 已提交
493 494
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
495
                    dtype=orig_var.dtype,
496
                    type=orig_var.type,
T
typhoonzero 已提交
497
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
498
                var_mapping[varname].append(var)
T
typhoonzero 已提交
499
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
500
        return var_mapping
T
done  
typhoonzero 已提交
501 502 503 504 505 506 507 508 509

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
T
typhoonzero 已提交
510
            persistable=True)
T
done  
typhoonzero 已提交
511

T
typhoonzero 已提交
512
    def _append_split_op(self, program, gradblocks):
513
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
514 515
        var_mapping = self._create_vars_from_blocklist(
            program, gradblocks, add_trainer_suffix=True)
T
typhoonzero 已提交
516
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
517 518
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
519
                continue
T
typhoonzero 已提交
520
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
521
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
522 523 524 525 526 527 528 529
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
530
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
531 532 533 534 535 536 537 538 539 540 541 542
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
543
        return var_mapping
T
done  
typhoonzero 已提交
544

T
typhoonzero 已提交
545 546 547 548
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
549
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
572 573 574 575 576
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
577 578
        else:
            orig_var_name = varname
T
typhoonzero 已提交
579 580
        return orig_var_name

581 582
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
                            origin_program):
583
        program = optimize_block.program
T
typhoonzero 已提交
584
        pserver_block = program.global_block()
T
typhoonzero 已提交
585
        new_inputs = dict()
T
typhoonzero 已提交
586 587
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
588
        for key in opt_op.input_names:
T
typhoonzero 已提交
589 590 591
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
592
                    if same_or_split_var(
T
typhoonzero 已提交
593 594
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
595 596 597 598 599 600
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
601 602
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
T
typhoonzero 已提交
603
                if self.trainers > 1:
T
typhoonzero 已提交
604 605 606 607 608 609
                    vars2merge = []
                    for i in xrange(self.trainers):
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

610
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
611 612 613
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
614 615 616 617 618 619
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
                            attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
620 621 622 623 624
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
625
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
626 627 628 629
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
630
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
631
                    name=param_block.name,
T
typhoonzero 已提交
632
                    persistable=True,
T
typhoonzero 已提交
633 634 635
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
636 637 638
            elif key == "LearningRate":
                # leraning rate variable has already be created by non-optimize op,
                # don't create it once again.
639 640 641 642 643 644 645 646 647 648 649
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
650

T
typhoonzero 已提交
651
        for key in opt_op.input_names:
652 653
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
654
                continue
T
typhoonzero 已提交
655
            var = self.program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
656 657 658 659
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
660
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
661 662 663 664 665
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
666

667
        # change output's ParamOut variable
T
typhoonzero 已提交
668 669
        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)
670
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
671

672
        optimize_block.append_op(
T
typhoonzero 已提交
673 674
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
675
            outputs=outputs,
T
typhoonzero 已提交
676 677
            attrs=opt_op.attrs)

678 679
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
680
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
681 682
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
683 684 685 686
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
687
            for var in varlist:
688 689
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
690 691 692 693 694 695 696 697
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

698 699 700 701 702 703 704 705 706 707 708
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
                program.global_block().create_var(
                    name=var.name,
                    persistable=var.persistable,
                    dtype=var.dtype,
                    shape=var.shape)

709
        optimize_block.append_op(
T
typhoonzero 已提交
710
            type=opt_op.type,
T
typhoonzero 已提交
711 712
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
713 714
            attrs=opt_op.attrs)

715 716 717 718
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
732 733
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
734
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
735
        op2_output_names = op2.desc.output_arg_names()
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc... 
T
typhoonzero 已提交
756 757
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
758 759 760 761 762 763 764
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
765
        if op.input("Param")[0] in param_names:
766 767 768
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
769
                param = op.input("Param")[0]
T
typhoonzero 已提交
770
                if same_or_split_var(n, param) and n != param:
771 772 773 774
                    return True
            return False
        return False

T
typhoonzero 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
        block = self.program.global_block()
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
        return lr_ops