rnn_memory_helper_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang(Tony) 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
Yang Yang(Tony) 已提交
17

W
wanghuancoder 已提交
18 19 20 21 22 23 24 25 26 27 28
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
class Scope;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle

Y
Yang Yang(Tony) 已提交
29 30 31 32 33 34 35 36 37
namespace paddle {
namespace operators {
class RNNMemoryHelperOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperOp(const std::string &type,
                    const framework::VariableNameMap &inputs,
                    const framework::VariableNameMap &outputs,
                    const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
38 39 40 41

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
42 43
    auto mem_var_name = Input("X");
    auto *mem_var = scope.FindVar(mem_var_name);
44 45 46
    PADDLE_ENFORCE_NOT_NULL(
        mem_var, platform::errors::NotFound("Cannot find mem_var: %s in scope.",
                                            mem_var_name));
Y
Yang Yang(Tony) 已提交
47 48 49

    auto out_name = this->Output("Out");
    auto *out_var = scope.FindVar(out_name);
50 51 52
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound("Cannot find out_var: %s in scope.",
                                            out_name));
Y
Yang Yang(Tony) 已提交
53

C
chengduo 已提交
54 55 56
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);

Y
Yang Yang(Tony) 已提交
57 58
    auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
    auto &mem_tensor = mem_var->Get<framework::LoDTensor>();
C
chengduo 已提交
59
    framework::TensorCopy(mem_tensor, dev_place, dev_ctx, out_tensor);
Y
Yang Yang(Tony) 已提交
60 61 62 63 64 65 66
    out_tensor->set_lod(mem_tensor.lod());
  }
};

class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
67 68 69
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "RNNMemoryHelper");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "RNNMemoryHelper");

70
    ctx->ShareDim("X", /*->*/ "Out");
Y
Yang Yang(Tony) 已提交
71 72 73 74 75 76
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class RNNMemoryHelperOpInfoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
77
  void Make() override {
Y
Yang Yang(Tony) 已提交
78 79
    AddInput("X", "");
    AddOutput("Out", "");
F
fengjiayi 已提交
80
    AddAttr<int>("dtype",
Y
Yang Yang(Tony) 已提交
81 82
                 "(int, default 5 (FP32)) "
                 "Output data type")
83
        .SetDefault(framework::proto::VarType::FP32);
Y
Yang Yang(Tony) 已提交
84 85 86 87 88 89 90 91 92 93 94
    AddComment("");
  }
};

class RNNMemoryHelperGradOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperGradOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
95 96 97 98

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
99 100 101 102 103
    auto out_grad_var_name = Input(framework::GradVarName("Out"));
    auto *out_grad_var = scope.FindVar(out_grad_var_name);

    auto in_grad_var_name = Output(framework::GradVarName("X"));
    auto *in_grad_var = scope.FindVar(in_grad_var_name);
104 105 106 107
    PADDLE_ENFORCE_NOT_NULL(
        in_grad_var,
        platform::errors::NotFound("Cannot find in_grad_var: %s in scope.",
                                   in_grad_var_name));
Y
Yang Yang(Tony) 已提交
108

C
chengduo 已提交
109 110 111
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);

X
xiongkun 已提交
112 113 114 115 116
    // NOTE(xiongkun03): In standalone executor, after each run, the
    // var.tensor.holder will be delete instead of variable. So we need exam the
    // IsInitialized().
    if (out_grad_var == nullptr ||
        !out_grad_var->Get<framework::LoDTensor>().IsInitialized()) {
M
minqiyang 已提交
117
      VLOG(5) << "Using fill constant 0 as starting gradient";
Y
Yang Yang(Tony) 已提交
118 119 120 121 122
      auto in_var_name = Input("X");
      auto *in_var = scope.FindVar(in_var_name);
      auto &in_var_tensor = in_var->Get<framework::LoDTensor>();

      framework::AttributeMap attrs;
Y
Yu Yang 已提交
123
      attrs["dtype"] = in_var_tensor.type();
124
      attrs["shape"] = framework::vectorize<int>(in_var_tensor.dims());
Y
Yang Yang(Tony) 已提交
125 126 127 128
      attrs["value"] = 0.0f;

      auto zero_op = framework::OpRegistry::CreateOp(
          "fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs);
D
dzhwinter 已提交
129
      zero_op->Run(scope, dev_place);
Y
Yang Yang(Tony) 已提交
130 131 132
    } else {
      auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>();
      auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>();
C
chengduo 已提交
133 134
      framework::TensorCopy(out_grad_tensor, dev_place, dev_ctx,
                            in_grad_tensor);
Y
Yang Yang(Tony) 已提交
135 136 137 138 139 140 141 142
      in_grad_tensor->set_lod(out_grad_tensor.lod());
    }
  }
};

class RNNMemoryHelperGradOpInfoMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
143
  void Make() override {
Y
Yang Yang(Tony) 已提交
144 145 146 147
    AddInput(framework::GradVarName("Out"), "");
    AddInput("X", "");
    AddInput("Out", "");
    AddOutput(framework::GradVarName("X"), "");
F
fengjiayi 已提交
148
    AddAttr<int>("dtype",
Y
Yang Yang(Tony) 已提交
149 150
                 "(int, default 5 (FP32)) "
                 "Output data type")
151
        .SetDefault(framework::proto::VarType::FP32);
Y
Yang Yang(Tony) 已提交
152 153 154 155 156 157 158 159
    AddComment("");
  }
};

class RNNMemoryHelperGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
160 161 162
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "RNNMemoryHelperGrad");
    OP_INOUT_CHECK(ctx->HasOutput(x_grad_name), "Output", x_grad_name,
                   "RNNMemoryHelperGrad");
Y
Yu Yang 已提交
163 164
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
Y
Yang Yang(Tony) 已提交
165 166 167 168 169 170
  }
};

}  // namespace operators
}  // namespace paddle

H
hong 已提交
171 172 173 174 175 176
REGISTER_OPERATOR(
    rnn_memory_helper, paddle::operators::RNNMemoryHelperOp,
    paddle::operators::RNNMemoryHelperOpInfoMaker,
    paddle::operators::RNNMemoryHelperOpShapeInference,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
Y
Yang Yang(Tony) 已提交
177 178 179 180
REGISTER_OPERATOR(rnn_memory_helper_grad,
                  paddle::operators::RNNMemoryHelperGradOp,
                  paddle::operators::RNNMemoryHelperGradOpInfoMaker,
                  paddle::operators::RNNMemoryHelperGradOpShapeInference);