rnn_memory_helper_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang(Tony) 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
Yang Yang(Tony) 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {
class RNNMemoryHelperOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperOp(const std::string &type,
                    const framework::VariableNameMap &inputs,
                    const framework::VariableNameMap &outputs,
                    const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
27 28 29 30

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
31 32
    auto mem_var_name = Input("X");
    auto *mem_var = scope.FindVar(mem_var_name);
33 34 35
    PADDLE_ENFORCE_NOT_NULL(
        mem_var, platform::errors::NotFound("Cannot find mem_var: %s in scope.",
                                            mem_var_name));
Y
Yang Yang(Tony) 已提交
36 37 38

    auto out_name = this->Output("Out");
    auto *out_var = scope.FindVar(out_name);
39 40 41
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound("Cannot find out_var: %s in scope.",
                                            out_name));
Y
Yang Yang(Tony) 已提交
42

C
chengduo 已提交
43 44 45
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);

Y
Yang Yang(Tony) 已提交
46 47
    auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
    auto &mem_tensor = mem_var->Get<framework::LoDTensor>();
C
chengduo 已提交
48
    framework::TensorCopy(mem_tensor, dev_place, dev_ctx, out_tensor);
Y
Yang Yang(Tony) 已提交
49 50 51 52 53 54 55
    out_tensor->set_lod(mem_tensor.lod());
  }
};

class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
56 57 58
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "RNNMemoryHelper");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "RNNMemoryHelper");

59
    ctx->ShareDim("X", /*->*/ "Out");
Y
Yang Yang(Tony) 已提交
60 61 62 63 64 65
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class RNNMemoryHelperOpInfoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override {
Y
Yang Yang(Tony) 已提交
67 68
    AddInput("X", "");
    AddOutput("Out", "");
F
fengjiayi 已提交
69
    AddAttr<int>("dtype",
Y
Yang Yang(Tony) 已提交
70 71
                 "(int, default 5 (FP32)) "
                 "Output data type")
72
        .SetDefault(framework::proto::VarType::FP32);
Y
Yang Yang(Tony) 已提交
73 74 75 76 77 78 79 80 81 82 83
    AddComment("");
  }
};

class RNNMemoryHelperGradOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperGradOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
84 85 86 87

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
88 89 90 91 92
    auto out_grad_var_name = Input(framework::GradVarName("Out"));
    auto *out_grad_var = scope.FindVar(out_grad_var_name);

    auto in_grad_var_name = Output(framework::GradVarName("X"));
    auto *in_grad_var = scope.FindVar(in_grad_var_name);
93 94 95 96
    PADDLE_ENFORCE_NOT_NULL(
        in_grad_var,
        platform::errors::NotFound("Cannot find in_grad_var: %s in scope.",
                                   in_grad_var_name));
Y
Yang Yang(Tony) 已提交
97

C
chengduo 已提交
98 99 100
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);

Y
Yang Yang(Tony) 已提交
101
    if (out_grad_var == nullptr) {
M
minqiyang 已提交
102
      VLOG(5) << "Using fill constant 0 as starting gradient";
Y
Yang Yang(Tony) 已提交
103 104 105 106 107
      auto in_var_name = Input("X");
      auto *in_var = scope.FindVar(in_var_name);
      auto &in_var_tensor = in_var->Get<framework::LoDTensor>();

      framework::AttributeMap attrs;
Y
Yu Yang 已提交
108
      attrs["dtype"] = in_var_tensor.type();
109
      attrs["shape"] = framework::vectorize<int>(in_var_tensor.dims());
Y
Yang Yang(Tony) 已提交
110 111 112 113
      attrs["value"] = 0.0f;

      auto zero_op = framework::OpRegistry::CreateOp(
          "fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs);
D
dzhwinter 已提交
114
      zero_op->Run(scope, dev_place);
Y
Yang Yang(Tony) 已提交
115 116 117
    } else {
      auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>();
      auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>();
C
chengduo 已提交
118 119
      framework::TensorCopy(out_grad_tensor, dev_place, dev_ctx,
                            in_grad_tensor);
Y
Yang Yang(Tony) 已提交
120 121 122 123 124 125 126 127
      in_grad_tensor->set_lod(out_grad_tensor.lod());
    }
  }
};

class RNNMemoryHelperGradOpInfoMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
128
  void Make() override {
Y
Yang Yang(Tony) 已提交
129 130 131 132
    AddInput(framework::GradVarName("Out"), "");
    AddInput("X", "");
    AddInput("Out", "");
    AddOutput(framework::GradVarName("X"), "");
F
fengjiayi 已提交
133
    AddAttr<int>("dtype",
Y
Yang Yang(Tony) 已提交
134 135
                 "(int, default 5 (FP32)) "
                 "Output data type")
136
        .SetDefault(framework::proto::VarType::FP32);
Y
Yang Yang(Tony) 已提交
137 138 139 140 141 142 143 144
    AddComment("");
  }
};

class RNNMemoryHelperGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
145 146 147
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "RNNMemoryHelperGrad");
    OP_INOUT_CHECK(ctx->HasOutput(x_grad_name), "Output", x_grad_name,
                   "RNNMemoryHelperGrad");
Y
Yu Yang 已提交
148 149
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
Y
Yang Yang(Tony) 已提交
150 151 152 153 154 155
  }
};

}  // namespace operators
}  // namespace paddle

H
hong 已提交
156 157 158 159 160 161
REGISTER_OPERATOR(
    rnn_memory_helper, paddle::operators::RNNMemoryHelperOp,
    paddle::operators::RNNMemoryHelperOpInfoMaker,
    paddle::operators::RNNMemoryHelperOpShapeInference,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
Y
Yang Yang(Tony) 已提交
162 163 164 165
REGISTER_OPERATOR(rnn_memory_helper_grad,
                  paddle::operators::RNNMemoryHelperGradOp,
                  paddle::operators::RNNMemoryHelperGradOpInfoMaker,
                  paddle::operators::RNNMemoryHelperGradOpShapeInference);