tensor_py.h 43.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
18

W
wopeizl 已提交
19 20
#include <algorithm>
#include <memory>
Q
qijun 已提交
21
#include <string>
C
chengduoZH 已提交
22
#include <tuple>
23
#include <utility>
C
chengduoZH 已提交
24
#include <vector>
25

26
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
27 28
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
29
#include "paddle/fluid/operators/eigen/eigen_function.h"
W
wopeizl 已提交
30 31
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
32
#include "paddle/fluid/platform/bfloat16.h"
33
#include "paddle/fluid/platform/device/device_wrapper.h"
34
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
35 36
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
37
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/platform/device_context.h"
39
#include "paddle/fluid/platform/float16.h"
40
#include "paddle/fluid/platform/profiler/event_tracing.h"
J
Jack Zhou 已提交
41 42
#include "paddle/phi/core/string_tensor.h"
#include "paddle/phi/kernels/strings/unicode.h"
Q
qijun 已提交
43 44
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
45

W
wopeizl 已提交
46 47
namespace py = pybind11;

48 49 50 51 52 53 54
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
55
constexpr int NPY_UINT16_ = 4;
56 57
constexpr int NPY_COMPLEX64 = 14;
constexpr int NPY_COMPLEX128 = 15;
58

W
wanghuancoder 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
// cast numpy type form S to T, this may allocate new memory
template <class T, class S>
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  if (std::is_same<T, S>::value) {
    return array;
  }
  auto dim = array.ndim();
  std::vector<py::ssize_t> result_shape(dim);
  for (auto i = 0; i < dim; i++) {
    result_shape[i] = array.shape(i);
  }

  py::array_t<T> result(result_shape);

  return py::vectorize([](S s) { return static_cast<T>(s); })(array);
}

template <class T>
static py::array_t<T> CastNumpyArray(const py::object &array) {
  if (py::isinstance<py::array_t<float>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<float>>());
  } else if (py::isinstance<py::array_t<double>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<double>>());
  } else if (py::isinstance<py::array_t<int32_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int32_t>>());
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int64_t>>());
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<bool>>());
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Value type error. The assign numpy value allows integer, float, "
        "double and bool, "
        "but received %s.",
        Py_TYPE(array.ptr())->tp_name));
  }
  // can't reach here
  return py::array_t<T>();
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
114
  static constexpr auto name = _("float16");
115 116
};

117 118 119 120 121 122 123 124 125 126 127 128 129 130
// Note: Since bfloat16 is not a builtin type in C++ and in numpy,
// we register paddle::platform::bfloat16 as numpy.uint16.
template <>
struct npy_format_descriptor<paddle::platform::bfloat16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_UINT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "H" represents UINT16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "H";
  }
131
  static constexpr auto name = _("bfloat16");
132 133
};

134
// we register paddle::platform::complex<float> as numpy.complex64.
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
template <>
struct npy_format_descriptor<paddle::platform::complex<float>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX64);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "F" represents complex64.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "F";
  }
  static constexpr auto name = _("complext64");
};

template <>
struct npy_format_descriptor<paddle::platform::complex<double>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX128);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "D" represents complex128.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "D";
  }
  static constexpr auto name = _("complext128");
};

171 172 173
}  // namespace detail
}  // namespace pybind11

174
namespace paddle {
175
namespace pybind {
176

177 178
namespace details {

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
      : Allocation(const_cast<void *>(arr.data()), sizeof(T) * (arr.size()),
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

204 205 206 207 208 209 210 211 212 213 214 215
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
216
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::bfloat16);
217 218
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<float>);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<double>);
219 220 221 222
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
L
Leo Chen 已提交
223
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int16_t);
224 225
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);
L
Leo Chen 已提交
226
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
227 228 229 230 231 232 233

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
234 235 236
    } else if (std::is_same<T, platform::bfloat16>::value) {                \
      /* NumPy character code of uint16 due to no support for bfloat16 */   \
      return "H";                                                           \
237 238 239 240
    } else if (std::is_same<T, platform::complex<float>>::value) {          \
      return "F";                                                           \
    } else if (std::is_same<T, platform::complex<double>>::value) {         \
      return "D";                                                           \
241 242
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
243 244 245 246 247
      PADDLE_ENFORCE_EQ(                                                    \
          kIsValidDType, true,                                              \
          platform::errors::Unimplemented(                                  \
              "This type [%s] of tensor cannot be expose to Python",        \
              typeid(T).name()));                                           \
248 249 250 251 252 253
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
254 255
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", framework::DataTypeToString(type)));
256 257 258 259
}

}  // namespace details

260
template <typename T>
261
T TensorGetElement(const framework::Tensor &self, size_t offset) {
262 263 264
  PADDLE_ENFORCE_LT(offset, self.numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
265

Q
qingqing01 已提交
266
  T b = static_cast<T>(0);
267
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
268
    b = self.data<T>()[offset];
269 270 271
  } else if (platform::is_xpu_place(self.place())) {
#ifdef PADDLE_WITH_XPU
    const T *a = self.data<T>();
272
    auto p = self.place();
273 274 275
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self.place())) {
276
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
277
    const T *a = self.data<T>();
278
    auto p = self.place();
Q
qingqing01 已提交
279 280
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
281 282 283 284
#endif
  } else if (platform::is_mlu_place(self.place())) {
#ifdef PADDLE_WITH_MLU
    const T *a = self.data<T>();
285
    auto p = self.place();
286 287
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
288 289 290 291
#endif
  } else if (platform::is_npu_place(self.place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
    const T *a = self.data<T>();
292
    auto p = self.place();
293 294
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
295 296 297 298 299 300 301
#endif
  } else if (platform::is_custom_place(self.place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    const T *a = self.data<T>();
    auto p = self.place();
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
Q
qingqing01 已提交
302
#endif
303
  }
304 305
  VLOG(10) << "TensorGetElement, place: " << self.place()
           << ", offset: " << offset << ", element: " << b;
Q
qingqing01 已提交
306
  return b;
307 308 309
}

template <typename T>
310
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
311 312 313
  PADDLE_ENFORCE_LT(offset, self->numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
314 315
  VLOG(10) << "TensorSetElement, place: " << self->place()
           << ", offset: " << offset << ", element: " << elem;
Q
qingqing01 已提交
316
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
317
    self->mutable_data<T>(self->place())[offset] = elem;
318 319
  } else if (platform::is_xpu_place(self->place())) {
#ifdef PADDLE_WITH_XPU
320
    auto p = self->place();
321 322 323 324
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self->place())) {
325
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
326
    auto p = self->place();
Q
qingqing01 已提交
327 328 329
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
330 331 332
#endif
  } else if (platform::is_mlu_place(self->place())) {
#ifdef PADDLE_WITH_MLU
333
    auto p = self->place();
334 335 336
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
337 338 339
#endif
  } else if (platform::is_npu_place(self->place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
340
    auto p = self->place();
341 342 343
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
344 345 346 347 348 349 350
#endif
  } else if (platform::is_custom_place(self->place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    auto p = self->place();
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
Q
qingqing01 已提交
351
#endif
352
  }
353 354
}

355 356 357
template <typename T, typename P>
void SetTensorFromPyArrayT(
    framework::Tensor *self,
358
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
359
    const P &place, bool zero_copy) {
360 361 362 363 364
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
365
  self->Resize(phi::make_ddim(dims));
366 367

  if (paddle::platform::is_cpu_place(place)) {
368 369 370
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
371
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
372 373 374 375
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
376 377
  } else if (paddle::platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
W
WangXi 已提交
378 379 380
    // NOTE(wangxi): When copying data to the accelerator card,
    // we need set_device(dev_id) first.
    platform::Place tmp_place = place;
381
    platform::XPUDeviceGuard guard(tmp_place.device);
382
    auto dst = self->mutable_data<T>(place);
383
    memory::Copy(tmp_place, static_cast<void *>(dst), platform::CPUPlace(),
T
taixiurong 已提交
384
                 static_cast<const void *>(array.data()), array.nbytes());
385 386 387 388
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
J
jianghaicheng 已提交
389 390 391 392 393 394
#endif
  } else if (paddle::platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
395
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
J
jianghaicheng 已提交
396
    } else {
397 398 399 400 401 402 403 404
      // IPU does not store Tensor data, Tensor will be created on CPU
      if (!self->initialized()) {
        auto dst = self->mutable_data<T>(place);
        std::memcpy(dst, array.data(), array.nbytes());
      } else {
        auto dst = self->mutable_data<T>(self->place());
        std::memcpy(dst, array.data(), array.nbytes());
      }
J
jianghaicheng 已提交
405 406 407 408 409
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use IPUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with IPU support."));
410 411 412 413
#endif
  } else if (paddle::platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    platform::Place tmp_place = place;
414
    platform::NPUDeviceGuard guard(tmp_place.device);
415 416 417 418 419 420 421 422 423 424
    auto dst = self->mutable_data<T>(place);
    platform::NPUMemcpySync(dst, array.data(), array.nbytes(),
                            ACL_MEMCPY_HOST_TO_DEVICE);
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with NPU support."));
425 426 427 428
#endif
  } else if (paddle::platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    platform::Place tmp_place = place;
429
    platform::MLUDeviceGuard guard(tmp_place.device);
430 431 432 433 434 435
    auto dst = self->mutable_data<T>(place);
    paddle::platform::MLUMemcpyH2DSync(dst, array.data(), array.nbytes());
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
436 437 438 439
#endif
  } else if (paddle::platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    platform::Place tmp_place = place;
440
    phi::DeviceGuard guard(tmp_place);
441 442
    auto dst = self->mutable_data<T>(place);

443
    phi::DeviceManager::GetDeviceWithPlace(tmp_place)->MemoryCopyH2D(
444 445 446 447 448 449 450 451 452 453
        reinterpret_cast<void *>(dst),
        const_cast<void *>(reinterpret_cast<const void *>(array.data())),
        array.nbytes());
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomDevice in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with CustomDevice support."));
454
#endif
455
  } else {
456
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
457
    if (paddle::platform::is_gpu_place(place)) {
W
WangXi 已提交
458 459
      // NOTE(wangxi): When copying data to the accelerator card,
      // we need set_device(dev_id) first.
460
      platform::CUDADeviceGuard guard(place.device);
461
      auto dst = self->mutable_data<T>(place);
462 463 464 465
#ifdef PADDLE_WITH_HIP
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      hipMemcpyHostToDevice);
#else
466 467
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      cudaMemcpyHostToDevice);
468
#endif
469

470 471 472
    } else if (paddle::platform::is_cuda_pinned_place(place)) {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
473
    } else {
474 475 476
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible place type: Tensor.set() supports "
          "CPUPlace, CUDAPlace "
477
          "and CUDAPinnedPlace, but got %s!",
478
          place));
479 480
    }
#else
481
    PADDLE_THROW(platform::errors::PermissionDenied(
482
        "Cannot use CUDAPlace or CUDAPinnedPlace in CPU only version, "
483
        "Please recompile or reinstall Paddle with CUDA support."));
484 485 486 487 488
#endif
  }
}

template <typename P>
489
void SetTensorFromPyArray(framework::Tensor *self, const py::object &obj,
490
                          const P &place, bool zero_copy) {
491
  auto array = obj.cast<py::array>();
492
  if (py::isinstance<py::array_t<float>>(array)) {
493
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
494
  } else if (py::isinstance<py::array_t<int>>(array)) {
495
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
496
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
497
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
498
  } else if (py::isinstance<py::array_t<double>>(array)) {
499
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
500
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
501
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
L
Leo Chen 已提交
502 503
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetTensorFromPyArrayT<int16_t, P>(self, array, place, zero_copy);
504
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
505
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
506
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
507 508
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
                                                        zero_copy);
509 510 511 512 513 514 515 516
  } else if (py::isinstance<py::array_t<paddle::platform::complex<float>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<float>, P>(
        self, array, place, zero_copy);
  } else if (py::isinstance<py::array_t<paddle::platform::complex<double>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<double>, P>(
        self, array, place, zero_copy);
517
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
518 519 520 521
    // since there is still no support for bfloat16 in NumPy,
    // uint16 is used for casting bfloat16
    SetTensorFromPyArrayT<paddle::platform::bfloat16, P>(self, array, place,
                                                         zero_copy);
522
  } else if (py::isinstance<py::array_t<bool>>(array)) {
523
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
524
  } else {
525 526
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning,
527
    PADDLE_THROW(platform::errors::InvalidArgument(
528 529 530 531
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64, uint8 or uint16, "
        "please check your input or input array data type."));
532 533 534
  }
}

J
Jack Zhou 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
template <typename P>
void SetStringTensorFromPyArray(phi::StringTensor *self, const py::array &array,
                                const P &place) {
  bool is_string_pyarray =
      array.dtype().kind() == 'S' || array.dtype().kind() == 'U';
  PADDLE_ENFORCE_EQ(is_string_pyarray, true,
                    platform::errors::InvalidArgument(
                        "Expect the dtype of numpy array is string or "
                        "unicode, but recevie dtype %s",
                        array.dtype()));
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(phi::make_ddim(dims));
  auto itemsize = array.itemsize();
  if (paddle::platform::is_cpu_place(place)) {
    auto dst = self->mutable_data(place);
    if (array.dtype().kind() == 'S') {
      for (int i = 0; i < self->numel(); ++i) {
        dst[i] =
            pstring(reinterpret_cast<const char *>(array.data()) + itemsize * i,
                    itemsize);
      }
    } else {
      // array.dtype().kind() == 'U'
      VLOG(6) << "numpy array itemsize: " << itemsize;
      for (int i = 0; i < self->numel(); ++i) {
        // Note(zhoushunjie): The itemsize of unicode numpy array is the
        // the size of each unicode string. Each unicode string is aligned
        // to max length of the array of unicode strings, so the size of
        // each unicode string is same. The size of each unicode character is
        // 4, so the size of unicode string is 4 times of the length of
        // unicode string.
        auto unicode_len = itemsize / 4;
        auto utf8_len = phi::strings::GetUTF8StrLen(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
            unicode_len);
        pstring pstr(utf8_len - 1, 0);
        phi::strings::GetUTF8Str(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
            pstr.mdata(), unicode_len);
        dst[i] = pstr;
      }
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

S
Siming Dai 已提交
589
template <typename T>
590 591
void SetUVATensorFromPyArrayImpl(framework::LoDTensor *self_tensor,
                                 const py::array_t<T> &array, int device_id) {
S
Siming Dai 已提交
592
#if defined(PADDLE_WITH_CUDA)
593
  VLOG(4) << "Running in SetUVATensorFromPyArrayImpl.";
S
Siming Dai 已提交
594 595 596 597 598 599 600
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  int64_t numel = 1;
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.emplace_back(static_cast<int>(array.shape()[i]));
    numel *= static_cast<int>(array.shape()[i]);
  }
601
  self_tensor->Resize(phi::make_ddim(dims));
S
Siming Dai 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

  auto data_type = framework::ToDataType(std::type_index(typeid(T)));
  const auto &need_allocate_size = numel * framework::SizeOfType(data_type);
  T *data_ptr;
  cudaHostAlloc(reinterpret_cast<void **>(&data_ptr), need_allocate_size,
                cudaHostAllocWriteCombined | cudaHostAllocMapped);
  std::memcpy(data_ptr, array.data(), array.nbytes());

  void *cuda_device_pointer = nullptr;
  cudaHostGetDevicePointer(reinterpret_cast<void **>(&cuda_device_pointer),
                           reinterpret_cast<void *>(data_ptr), 0);
  std::shared_ptr<memory::allocation::Allocation> holder =
      std::make_shared<memory::allocation::Allocation>(
          cuda_device_pointer, need_allocate_size,
          platform::CUDAPlace(device_id));
617
  self_tensor->ResetHolderWithType(holder,
618
                                   framework::TransToPhiDataType(data_type));
S
Siming Dai 已提交
619 620 621
#endif
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::imperative::VarBase> &self,
    const py::array_t<T> &array, int device_id) {
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for VarBase.";
  auto *self_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::experimental::Tensor> &self,
    const py::array_t<T> &array, int device_id) {
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for Phi::Tensor.";
  phi::DenseTensorMeta meta =
      phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({1, 1}));
  std::shared_ptr<phi::DenseTensor> tmp_t = std::make_shared<phi::DenseTensor>(
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
      meta);
  self.get()->set_impl(tmp_t);
  auto *self_tensor =
      static_cast<paddle::framework::LoDTensor *>(self.get()->impl().get());

  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

W
wopeizl 已提交
654 655 656 657 658 659 660 661 662
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

663 664
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
W
wopeizl 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
684 685
  operators::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
      eigen_place, out_t, in_t, offsets, extents);
W
wopeizl 已提交
686 687 688 689 690 691 692 693 694
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
695 696
      auto in_stride = phi::stride_numel(in.dims());
      auto out_stride = phi::stride_numel(out->dims());
W
wopeizl 已提交
697 698 699 700 701 702 703 704 705 706 707 708
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

L
Leo Chen 已提交
709 710 711
inline void _getSliceinfo(const framework::Tensor &self, py::object obj,
                          const int64_t dim, int64_t *pstart, int64_t *pstop,
                          int64_t *pstep, int64_t *pslicelength) {
W
wopeizl 已提交
712 713 714 715 716
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
Z
zyfncg 已提交
717 718 719 720 721 722
  PADDLE_ENFORCE(
      0 <= dim && dim < srcDDim.size(),
      platform::errors::OutOfRange("The dim %d of slice is out of bounds, it "
                                   "shound be in the range of [0, %d).",
                                   dim, srcDDim.size()));

W
wopeizl 已提交
723 724 725 726
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
Z
zyfncg 已提交
727 728 729 730
      PADDLE_THROW(platform::errors::OutOfRange(
          "Slice on dim: %d is error, please check the validity of tensor "
          "dims or slice item.",
          dim));
W
wopeizl 已提交
731 732 733 734 735 736 737
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
Z
zyfncg 已提交
738 739 740 741 742
    PADDLE_ENFORCE(
        std::abs(start) < srcDDim[dim],
        platform::errors::OutOfRange("The start %d of slice is out of bounds, "
                                     "it shound be in the range of (%d, %d).",
                                     start, -srcDDim[dim], srcDDim[dim]));
W
wopeizl 已提交
743 744 745 746 747
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
Z
zyfncg 已提交
748 749 750
    PADDLE_THROW(
        platform::errors::OutOfRange("Index object error, the index object for "
                                     "slice only supports slice(::) and int."));
W
wopeizl 已提交
751 752 753 754 755 756 757 758 759
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
760
    output->mutable_data(place, self.dtype());
761 762
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
763
    output->mutable_data(place, self.dtype());
764 765 766
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
767
    output->mutable_data(place, self.dtype());
768
#endif
W
wopeizl 已提交
769
  } else {
770
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
wopeizl 已提交
771
    if (platform::is_cuda_pinned_place(place)) {
772
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
773
    } else if ((platform::is_gpu_place(place))) {
774
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
815 816
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The dim size should be 1 to 9, current is %d", size));
W
wopeizl 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
860
  auto src_type = framework::TransToProtoVarType(self.dtype());
W
wopeizl 已提交
861 862 863
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
864 865
    case framework::proto::VarType::BF16:
      return _sliceAndConcat<paddle::platform::bfloat16>(self, obj, dim);
866
    case framework::proto::VarType::COMPLEX64:
867
      return _sliceAndConcat<paddle::platform::complex<float>>(self, obj, dim);
868
    case framework::proto::VarType::COMPLEX128:
869
      return _sliceAndConcat<paddle::platform::complex<double>>(self, obj, dim);
W
wopeizl 已提交
870 871 872 873
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
L
Leo Chen 已提交
874 875 876 877
    case framework::proto::VarType::INT8:
      return _sliceAndConcat<int8_t>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<int16_t>(self, obj, dim);
W
wopeizl 已提交
878 879 880 881 882 883 884
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
L
Leo Chen 已提交
885
      return _sliceAndConcat<uint8_t>(self, obj, dim);
W
wopeizl 已提交
886
    default:
887 888 889
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Not support tensor type: %s",
          framework::DataTypeToString(src_type)));
W
wopeizl 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

929 930
inline py::array TensorToPyArray(const framework::Tensor &tensor,
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
931 932 933
  if (!tensor.IsInitialized()) {
    return py::array();
  }
934
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
935
  bool is_xpu_tensor = platform::is_xpu_place(tensor.place());
936
  bool is_npu_tensor = platform::is_npu_place(tensor.place());
937
  bool is_mlu_tensor = platform::is_mlu_place(tensor.place());
938
  bool is_custom_device_tensor = platform::is_custom_place(tensor.place());
939
  const auto &tensor_dims = tensor.dims();
940
  auto tensor_dtype = framework::TransToProtoVarType(tensor.dtype());
941 942 943 944 945 946 947
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
948
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
949 950 951 952
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

953
  const void *tensor_buf_ptr = tensor.data();
954

955 956
  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(
      framework::TransToProtoVarType(tensor.dtype()));
957

958 959
  if (!is_gpu_tensor && !is_xpu_tensor && !is_npu_tensor && !is_mlu_tensor &&
      !is_custom_device_tensor) {
960
    if (!need_deep_copy) {
961 962 963
      auto base = py::cast(std::move(tensor));
      return py::array(py::dtype(py_dtype_str.c_str()), py_dims, py_strides,
                       const_cast<void *>(tensor_buf_ptr), base);
964 965
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
966 967 968 969 970 971 972 973 974 975
      PADDLE_ENFORCE_EQ(
          py_arr.writeable(), true,
          platform::errors::InvalidArgument(
              "PyArray is not writable, in which case memory leak "
              "or double free would occur"));
      PADDLE_ENFORCE_EQ(
          py_arr.owndata(), true,
          platform::errors::InvalidArgument(
              "PyArray does not own data, in which case  memory leak "
              "or double free would occur"));
976 977 978 979 980 981
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
      paddle::memory::Copy(place, py_arr.mutable_data(), place, tensor_buf_ptr,
                           copy_bytes);
      return py_arr;
    }
982 983 984 985 986 987 988 989 990 991 992 993 994 995
  } else if (is_xpu_tensor) {
#ifdef PADDLE_WITH_XPU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
996
    auto p = tensor.place();
997 998 999 1000 1001 1002 1003 1004 1005
    paddle::memory::Copy(platform::CPUPlace(), py_arr.mutable_data(), p,
                         tensor_buf_ptr, copy_bytes);
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
#endif
  } else if (is_gpu_tensor) {
1006
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1019
    auto p = tensor.place();
1020 1021
    paddle::memory::Copy(platform::CPUPlace(), py_arr.mutable_data(), p,
                         tensor_buf_ptr, copy_bytes, nullptr);
1022
    return py_arr;
1023
#else
1024 1025 1026
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CUDAPlace in CPU only version, "
        "Please recompile or reinstall Paddle with CUDA support."));
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
#endif
  } else if (is_npu_tensor) {
#ifdef PADDLE_WITH_ASCEND_CL
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1042
    auto p = tensor.place();
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), p, tensor_buf_ptr,
        copy_bytes,
        reinterpret_cast<const platform::NPUDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version, "
        "Please recompile or reinstall Paddle with NPU support."));
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
#endif
  } else if (is_mlu_tensor) {
#ifdef PADDLE_WITH_MLU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1070
    auto p = tensor.place();
1071 1072 1073 1074 1075 1076 1077
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), p, tensor_buf_ptr,
        copy_bytes,
        reinterpret_cast<const platform::MLUDeviceContext &>(ctx).stream());
    ctx.Wait();
1078 1079 1080 1081 1082
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
#endif
  } else if (is_custom_device_tensor) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), tensor.place(),
        tensor_buf_ptr, copy_bytes,
        reinterpret_cast<const platform::CustomDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with CustomPlace "
        "support."));
1111
#endif
1112 1113 1114
  }
  PADDLE_THROW(platform::errors::Unimplemented("Place is not supported"));
  return py::array();
1115 1116
}

1117 1118
}  // namespace pybind
}  // namespace paddle