tensor_py.h 43.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
W
wopeizl 已提交
18 19
#include <algorithm>
#include <memory>
Q
qijun 已提交
20
#include <string>
C
chengduoZH 已提交
21
#include <tuple>
22
#include <utility>
C
chengduoZH 已提交
23
#include <vector>
24
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
27
#include "paddle/fluid/operators/eigen/eigen_function.h"
W
wopeizl 已提交
28 29
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
30
#include "paddle/fluid/platform/bfloat16.h"
31
#include "paddle/fluid/platform/device/device_wrapper.h"
32
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
33 34
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
35
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/platform/device_context.h"
37
#include "paddle/fluid/platform/float16.h"
38
#include "paddle/fluid/platform/profiler/event_tracing.h"
J
Jack Zhou 已提交
39 40
#include "paddle/phi/core/string_tensor.h"
#include "paddle/phi/kernels/strings/unicode.h"
Q
qijun 已提交
41 42
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
43

W
wopeizl 已提交
44 45
namespace py = pybind11;

46 47 48 49 50 51 52
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
53
constexpr int NPY_UINT16_ = 4;
54 55
constexpr int NPY_COMPLEX64 = 14;
constexpr int NPY_COMPLEX128 = 15;
56

W
wanghuancoder 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
// cast numpy type form S to T, this may allocate new memory
template <class T, class S>
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  if (std::is_same<T, S>::value) {
    return array;
  }
  auto dim = array.ndim();
  std::vector<py::ssize_t> result_shape(dim);
  for (auto i = 0; i < dim; i++) {
    result_shape[i] = array.shape(i);
  }

  py::array_t<T> result(result_shape);

  return py::vectorize([](S s) { return static_cast<T>(s); })(array);
}

template <class T>
static py::array_t<T> CastNumpyArray(const py::object &array) {
  if (py::isinstance<py::array_t<float>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<float>>());
  } else if (py::isinstance<py::array_t<double>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<double>>());
  } else if (py::isinstance<py::array_t<int32_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int32_t>>());
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int64_t>>());
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<bool>>());
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Value type error. The assign numpy value allows integer, float, "
        "double and bool, "
        "but received %s.",
        Py_TYPE(array.ptr())->tp_name));
  }
  // can't reach here
  return py::array_t<T>();
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
112
  static constexpr auto name = _("float16");
113 114
};

115 116 117 118 119 120 121 122 123 124 125 126 127 128
// Note: Since bfloat16 is not a builtin type in C++ and in numpy,
// we register paddle::platform::bfloat16 as numpy.uint16.
template <>
struct npy_format_descriptor<paddle::platform::bfloat16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_UINT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "H" represents UINT16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "H";
  }
129
  static constexpr auto name = _("bfloat16");
130 131
};

132
// we register paddle::platform::complex<float> as numpy.complex64.
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
template <>
struct npy_format_descriptor<paddle::platform::complex<float>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX64);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "F" represents complex64.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "F";
  }
  static constexpr auto name = _("complext64");
};

template <>
struct npy_format_descriptor<paddle::platform::complex<double>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX128);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "D" represents complex128.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "D";
  }
  static constexpr auto name = _("complext128");
};

169 170 171
}  // namespace detail
}  // namespace pybind11

172
namespace paddle {
173
namespace pybind {
174

175 176
namespace details {

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
      : Allocation(const_cast<void *>(arr.data()), sizeof(T) * (arr.size()),
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

202 203 204 205 206 207 208 209 210 211 212 213
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
214
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::bfloat16);
215 216
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<float>);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<double>);
217 218 219 220
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
L
Leo Chen 已提交
221
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int16_t);
222 223
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);
L
Leo Chen 已提交
224
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
225 226 227 228 229 230 231

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
232 233 234
    } else if (std::is_same<T, platform::bfloat16>::value) {                \
      /* NumPy character code of uint16 due to no support for bfloat16 */   \
      return "H";                                                           \
235 236 237 238
    } else if (std::is_same<T, platform::complex<float>>::value) {          \
      return "F";                                                           \
    } else if (std::is_same<T, platform::complex<double>>::value) {         \
      return "D";                                                           \
239 240
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
241 242 243 244 245
      PADDLE_ENFORCE_EQ(                                                    \
          kIsValidDType, true,                                              \
          platform::errors::Unimplemented(                                  \
              "This type [%s] of tensor cannot be expose to Python",        \
              typeid(T).name()));                                           \
246 247 248 249 250 251
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
252 253
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", framework::DataTypeToString(type)));
254 255 256 257
}

}  // namespace details

258
template <typename T>
259
T TensorGetElement(const framework::Tensor &self, size_t offset) {
260 261 262
  PADDLE_ENFORCE_LT(offset, self.numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
263

Q
qingqing01 已提交
264
  T b = static_cast<T>(0);
265
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
266
    b = self.data<T>()[offset];
267 268 269
  } else if (platform::is_xpu_place(self.place())) {
#ifdef PADDLE_WITH_XPU
    const T *a = self.data<T>();
270
    auto p = self.place();
271 272 273
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self.place())) {
274
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
275
    const T *a = self.data<T>();
276
    auto p = self.place();
Q
qingqing01 已提交
277 278
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
279 280 281 282
#endif
  } else if (platform::is_mlu_place(self.place())) {
#ifdef PADDLE_WITH_MLU
    const T *a = self.data<T>();
283
    auto p = self.place();
284 285
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
286 287 288 289
#endif
  } else if (platform::is_npu_place(self.place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
    const T *a = self.data<T>();
290
    auto p = self.place();
291 292
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
293 294 295 296 297 298 299
#endif
  } else if (platform::is_custom_place(self.place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    const T *a = self.data<T>();
    auto p = self.place();
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
Q
qingqing01 已提交
300
#endif
301
  }
302 303
  VLOG(10) << "TensorGetElement, place: " << self.place()
           << ", offset: " << offset << ", element: " << b;
Q
qingqing01 已提交
304
  return b;
305 306 307
}

template <typename T>
308
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
309 310 311
  PADDLE_ENFORCE_LT(offset, self->numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
312 313
  VLOG(10) << "TensorSetElement, place: " << self->place()
           << ", offset: " << offset << ", element: " << elem;
Q
qingqing01 已提交
314
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
315
    self->mutable_data<T>(self->place())[offset] = elem;
316 317
  } else if (platform::is_xpu_place(self->place())) {
#ifdef PADDLE_WITH_XPU
318
    auto p = self->place();
319 320 321 322
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self->place())) {
323
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
324
    auto p = self->place();
Q
qingqing01 已提交
325 326 327
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
328 329 330
#endif
  } else if (platform::is_mlu_place(self->place())) {
#ifdef PADDLE_WITH_MLU
331
    auto p = self->place();
332 333 334
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
335 336 337
#endif
  } else if (platform::is_npu_place(self->place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
338
    auto p = self->place();
339 340 341
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
342 343 344 345 346 347 348
#endif
  } else if (platform::is_custom_place(self->place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    auto p = self->place();
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
Q
qingqing01 已提交
349
#endif
350
  }
351 352
}

353 354 355
template <typename T, typename P>
void SetTensorFromPyArrayT(
    framework::Tensor *self,
356
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
357
    const P &place, bool zero_copy) {
358 359 360 361 362
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
363
  self->Resize(phi::make_ddim(dims));
364 365

  if (paddle::platform::is_cpu_place(place)) {
366 367 368
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
369
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
370 371 372 373
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
374 375
  } else if (paddle::platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
W
WangXi 已提交
376 377 378
    // NOTE(wangxi): When copying data to the accelerator card,
    // we need set_device(dev_id) first.
    platform::Place tmp_place = place;
379
    platform::XPUDeviceGuard guard(tmp_place.device);
380
    auto dst = self->mutable_data<T>(place);
381
    memory::Copy(tmp_place, static_cast<void *>(dst), platform::CPUPlace(),
T
taixiurong 已提交
382
                 static_cast<const void *>(array.data()), array.nbytes());
383 384 385 386
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
J
jianghaicheng 已提交
387 388 389 390 391 392
#endif
  } else if (paddle::platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
393
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
J
jianghaicheng 已提交
394
    } else {
395 396 397 398 399 400 401 402
      // IPU does not store Tensor data, Tensor will be created on CPU
      if (!self->initialized()) {
        auto dst = self->mutable_data<T>(place);
        std::memcpy(dst, array.data(), array.nbytes());
      } else {
        auto dst = self->mutable_data<T>(self->place());
        std::memcpy(dst, array.data(), array.nbytes());
      }
J
jianghaicheng 已提交
403 404 405 406 407
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use IPUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with IPU support."));
408 409 410 411
#endif
  } else if (paddle::platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    platform::Place tmp_place = place;
412
    platform::NPUDeviceGuard guard(tmp_place.device);
413 414 415 416 417 418 419 420 421 422
    auto dst = self->mutable_data<T>(place);
    platform::NPUMemcpySync(dst, array.data(), array.nbytes(),
                            ACL_MEMCPY_HOST_TO_DEVICE);
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with NPU support."));
423 424 425 426
#endif
  } else if (paddle::platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    platform::Place tmp_place = place;
427
    platform::MLUDeviceGuard guard(tmp_place.device);
428 429 430 431 432 433
    auto dst = self->mutable_data<T>(place);
    paddle::platform::MLUMemcpyH2DSync(dst, array.data(), array.nbytes());
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
434 435 436 437
#endif
  } else if (paddle::platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    platform::Place tmp_place = place;
438
    phi::DeviceGuard guard(tmp_place);
439 440
    auto dst = self->mutable_data<T>(place);

441
    phi::DeviceManager::GetDeviceWithPlace(tmp_place)->MemoryCopyH2D(
442 443 444 445 446 447 448 449 450 451
        reinterpret_cast<void *>(dst),
        const_cast<void *>(reinterpret_cast<const void *>(array.data())),
        array.nbytes());
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomDevice in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with CustomDevice support."));
452
#endif
453
  } else {
454
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
455
    if (paddle::platform::is_gpu_place(place)) {
W
WangXi 已提交
456 457
      // NOTE(wangxi): When copying data to the accelerator card,
      // we need set_device(dev_id) first.
458
      platform::CUDADeviceGuard guard(place.device);
459
      auto dst = self->mutable_data<T>(place);
460 461 462 463
#ifdef PADDLE_WITH_HIP
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      hipMemcpyHostToDevice);
#else
464 465
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      cudaMemcpyHostToDevice);
466
#endif
467

468 469 470
    } else if (paddle::platform::is_cuda_pinned_place(place)) {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
471
    } else {
472 473 474
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible place type: Tensor.set() supports "
          "CPUPlace, CUDAPlace "
475
          "and CUDAPinnedPlace, but got %s!",
476
          place));
477 478
    }
#else
479
    PADDLE_THROW(platform::errors::PermissionDenied(
480
        "Cannot use CUDAPlace or CUDAPinnedPlace in CPU only version, "
481
        "Please recompile or reinstall Paddle with CUDA support."));
482 483 484 485 486
#endif
  }
}

template <typename P>
487
void SetTensorFromPyArray(framework::Tensor *self, const py::object &obj,
488
                          const P &place, bool zero_copy) {
489
  auto array = obj.cast<py::array>();
490
  if (py::isinstance<py::array_t<float>>(array)) {
491
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
492
  } else if (py::isinstance<py::array_t<int>>(array)) {
493
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
494
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
495
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
496
  } else if (py::isinstance<py::array_t<double>>(array)) {
497
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
498
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
499
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
L
Leo Chen 已提交
500 501
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetTensorFromPyArrayT<int16_t, P>(self, array, place, zero_copy);
502
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
503
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
504
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
505 506
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
                                                        zero_copy);
507 508 509 510 511 512 513 514
  } else if (py::isinstance<py::array_t<paddle::platform::complex<float>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<float>, P>(
        self, array, place, zero_copy);
  } else if (py::isinstance<py::array_t<paddle::platform::complex<double>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<double>, P>(
        self, array, place, zero_copy);
515
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
516 517 518 519
    // since there is still no support for bfloat16 in NumPy,
    // uint16 is used for casting bfloat16
    SetTensorFromPyArrayT<paddle::platform::bfloat16, P>(self, array, place,
                                                         zero_copy);
520
  } else if (py::isinstance<py::array_t<bool>>(array)) {
521
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
522
  } else {
523 524
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning,
525
    PADDLE_THROW(platform::errors::InvalidArgument(
526 527 528 529
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64, uint8 or uint16, "
        "please check your input or input array data type."));
530 531 532
  }
}

J
Jack Zhou 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
template <typename P>
void SetStringTensorFromPyArray(phi::StringTensor *self, const py::array &array,
                                const P &place) {
  bool is_string_pyarray =
      array.dtype().kind() == 'S' || array.dtype().kind() == 'U';
  PADDLE_ENFORCE_EQ(is_string_pyarray, true,
                    platform::errors::InvalidArgument(
                        "Expect the dtype of numpy array is string or "
                        "unicode, but recevie dtype %s",
                        array.dtype()));
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(phi::make_ddim(dims));
  auto itemsize = array.itemsize();
  if (paddle::platform::is_cpu_place(place)) {
    auto dst = self->mutable_data(place);
    if (array.dtype().kind() == 'S') {
      for (int i = 0; i < self->numel(); ++i) {
        dst[i] =
            pstring(reinterpret_cast<const char *>(array.data()) + itemsize * i,
                    itemsize);
      }
    } else {
      // array.dtype().kind() == 'U'
      VLOG(6) << "numpy array itemsize: " << itemsize;
      for (int i = 0; i < self->numel(); ++i) {
        // Note(zhoushunjie): The itemsize of unicode numpy array is the
        // the size of each unicode string. Each unicode string is aligned
        // to max length of the array of unicode strings, so the size of
        // each unicode string is same. The size of each unicode character is
        // 4, so the size of unicode string is 4 times of the length of
        // unicode string.
        auto unicode_len = itemsize / 4;
        auto utf8_len = phi::strings::GetUTF8StrLen(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
            unicode_len);
        pstring pstr(utf8_len - 1, 0);
        phi::strings::GetUTF8Str(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
            pstr.mdata(), unicode_len);
        dst[i] = pstr;
      }
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

S
Siming Dai 已提交
587
template <typename T>
588 589
void SetUVATensorFromPyArrayImpl(framework::LoDTensor *self_tensor,
                                 const py::array_t<T> &array, int device_id) {
S
Siming Dai 已提交
590
#if defined(PADDLE_WITH_CUDA)
591
  VLOG(4) << "Running in SetUVATensorFromPyArrayImpl.";
S
Siming Dai 已提交
592 593 594 595 596 597 598
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  int64_t numel = 1;
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.emplace_back(static_cast<int>(array.shape()[i]));
    numel *= static_cast<int>(array.shape()[i]);
  }
599
  self_tensor->Resize(phi::make_ddim(dims));
S
Siming Dai 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

  auto data_type = framework::ToDataType(std::type_index(typeid(T)));
  const auto &need_allocate_size = numel * framework::SizeOfType(data_type);
  T *data_ptr;
  cudaHostAlloc(reinterpret_cast<void **>(&data_ptr), need_allocate_size,
                cudaHostAllocWriteCombined | cudaHostAllocMapped);
  std::memcpy(data_ptr, array.data(), array.nbytes());

  void *cuda_device_pointer = nullptr;
  cudaHostGetDevicePointer(reinterpret_cast<void **>(&cuda_device_pointer),
                           reinterpret_cast<void *>(data_ptr), 0);
  std::shared_ptr<memory::allocation::Allocation> holder =
      std::make_shared<memory::allocation::Allocation>(
          cuda_device_pointer, need_allocate_size,
          platform::CUDAPlace(device_id));
615
  self_tensor->ResetHolderWithType(holder,
616
                                   framework::TransToPhiDataType(data_type));
S
Siming Dai 已提交
617 618 619
#endif
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::imperative::VarBase> &self,
    const py::array_t<T> &array, int device_id) {
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for VarBase.";
  auto *self_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::experimental::Tensor> &self,
    const py::array_t<T> &array, int device_id) {
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for Phi::Tensor.";
  phi::DenseTensorMeta meta =
      phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({1, 1}));
  std::shared_ptr<phi::DenseTensor> tmp_t = std::make_shared<phi::DenseTensor>(
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
      meta);
  self.get()->set_impl(tmp_t);
  auto *self_tensor =
      static_cast<paddle::framework::LoDTensor *>(self.get()->impl().get());

  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

W
wopeizl 已提交
652 653 654 655 656 657 658 659 660
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

661 662
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
W
wopeizl 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
682 683
  operators::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
      eigen_place, out_t, in_t, offsets, extents);
W
wopeizl 已提交
684 685 686 687 688 689 690 691 692
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
693 694
      auto in_stride = phi::stride_numel(in.dims());
      auto out_stride = phi::stride_numel(out->dims());
W
wopeizl 已提交
695 696 697 698 699 700 701 702 703 704 705 706
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

L
Leo Chen 已提交
707 708 709
inline void _getSliceinfo(const framework::Tensor &self, py::object obj,
                          const int64_t dim, int64_t *pstart, int64_t *pstop,
                          int64_t *pstep, int64_t *pslicelength) {
W
wopeizl 已提交
710 711 712 713 714
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
Z
zyfncg 已提交
715 716 717 718 719 720
  PADDLE_ENFORCE(
      0 <= dim && dim < srcDDim.size(),
      platform::errors::OutOfRange("The dim %d of slice is out of bounds, it "
                                   "shound be in the range of [0, %d).",
                                   dim, srcDDim.size()));

W
wopeizl 已提交
721 722 723 724
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
Z
zyfncg 已提交
725 726 727 728
      PADDLE_THROW(platform::errors::OutOfRange(
          "Slice on dim: %d is error, please check the validity of tensor "
          "dims or slice item.",
          dim));
W
wopeizl 已提交
729 730 731 732 733 734 735
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
Z
zyfncg 已提交
736 737 738 739 740
    PADDLE_ENFORCE(
        std::abs(start) < srcDDim[dim],
        platform::errors::OutOfRange("The start %d of slice is out of bounds, "
                                     "it shound be in the range of (%d, %d).",
                                     start, -srcDDim[dim], srcDDim[dim]));
W
wopeizl 已提交
741 742 743 744 745
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
Z
zyfncg 已提交
746 747 748
    PADDLE_THROW(
        platform::errors::OutOfRange("Index object error, the index object for "
                                     "slice only supports slice(::) and int."));
W
wopeizl 已提交
749 750 751 752 753 754 755 756 757
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
758
    output->mutable_data(place, self.dtype());
759 760
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
761
    output->mutable_data(place, self.dtype());
762 763 764
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
765
    output->mutable_data(place, self.dtype());
766
#endif
W
wopeizl 已提交
767
  } else {
768
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
wopeizl 已提交
769
    if (platform::is_cuda_pinned_place(place)) {
770
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
771
    } else if ((platform::is_gpu_place(place))) {
772
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
813 814
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The dim size should be 1 to 9, current is %d", size));
W
wopeizl 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
858
  auto src_type = framework::TransToProtoVarType(self.dtype());
W
wopeizl 已提交
859 860 861
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
862 863
    case framework::proto::VarType::BF16:
      return _sliceAndConcat<paddle::platform::bfloat16>(self, obj, dim);
864
    case framework::proto::VarType::COMPLEX64:
865
      return _sliceAndConcat<paddle::platform::complex<float>>(self, obj, dim);
866
    case framework::proto::VarType::COMPLEX128:
867
      return _sliceAndConcat<paddle::platform::complex<double>>(self, obj, dim);
W
wopeizl 已提交
868 869 870 871
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
L
Leo Chen 已提交
872 873 874 875
    case framework::proto::VarType::INT8:
      return _sliceAndConcat<int8_t>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<int16_t>(self, obj, dim);
W
wopeizl 已提交
876 877 878 879 880 881 882
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
L
Leo Chen 已提交
883
      return _sliceAndConcat<uint8_t>(self, obj, dim);
W
wopeizl 已提交
884
    default:
885 886 887
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Not support tensor type: %s",
          framework::DataTypeToString(src_type)));
W
wopeizl 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

927 928
inline py::array TensorToPyArray(const framework::Tensor &tensor,
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
929 930 931
  if (!tensor.IsInitialized()) {
    return py::array();
  }
932
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
933
  bool is_xpu_tensor = platform::is_xpu_place(tensor.place());
934
  bool is_npu_tensor = platform::is_npu_place(tensor.place());
935
  bool is_mlu_tensor = platform::is_mlu_place(tensor.place());
936
  bool is_custom_device_tensor = platform::is_custom_place(tensor.place());
937
  const auto &tensor_dims = tensor.dims();
938
  auto tensor_dtype = framework::TransToProtoVarType(tensor.dtype());
939 940 941 942 943 944 945
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
946
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
947 948 949 950
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

951
  const void *tensor_buf_ptr = tensor.data();
952

953 954
  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(
      framework::TransToProtoVarType(tensor.dtype()));
955

956 957
  if (!is_gpu_tensor && !is_xpu_tensor && !is_npu_tensor && !is_mlu_tensor &&
      !is_custom_device_tensor) {
958
    if (!need_deep_copy) {
959 960 961
      auto base = py::cast(std::move(tensor));
      return py::array(py::dtype(py_dtype_str.c_str()), py_dims, py_strides,
                       const_cast<void *>(tensor_buf_ptr), base);
962 963
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
964 965 966 967 968 969 970 971 972 973
      PADDLE_ENFORCE_EQ(
          py_arr.writeable(), true,
          platform::errors::InvalidArgument(
              "PyArray is not writable, in which case memory leak "
              "or double free would occur"));
      PADDLE_ENFORCE_EQ(
          py_arr.owndata(), true,
          platform::errors::InvalidArgument(
              "PyArray does not own data, in which case  memory leak "
              "or double free would occur"));
974 975 976 977 978 979
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
      paddle::memory::Copy(place, py_arr.mutable_data(), place, tensor_buf_ptr,
                           copy_bytes);
      return py_arr;
    }
980 981 982 983 984 985 986 987 988 989 990 991 992 993
  } else if (is_xpu_tensor) {
#ifdef PADDLE_WITH_XPU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
994
    auto p = tensor.place();
995 996 997 998 999 1000 1001 1002 1003
    paddle::memory::Copy(platform::CPUPlace(), py_arr.mutable_data(), p,
                         tensor_buf_ptr, copy_bytes);
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
#endif
  } else if (is_gpu_tensor) {
1004
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1017
    auto p = tensor.place();
1018 1019
    paddle::memory::Copy(platform::CPUPlace(), py_arr.mutable_data(), p,
                         tensor_buf_ptr, copy_bytes, nullptr);
1020
    return py_arr;
1021
#else
1022 1023 1024
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CUDAPlace in CPU only version, "
        "Please recompile or reinstall Paddle with CUDA support."));
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
#endif
  } else if (is_npu_tensor) {
#ifdef PADDLE_WITH_ASCEND_CL
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1040
    auto p = tensor.place();
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), p, tensor_buf_ptr,
        copy_bytes,
        reinterpret_cast<const platform::NPUDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version, "
        "Please recompile or reinstall Paddle with NPU support."));
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
#endif
  } else if (is_mlu_tensor) {
#ifdef PADDLE_WITH_MLU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1068
    auto p = tensor.place();
1069 1070 1071 1072 1073 1074 1075
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), p, tensor_buf_ptr,
        copy_bytes,
        reinterpret_cast<const platform::MLUDeviceContext &>(ctx).stream());
    ctx.Wait();
1076 1077 1078 1079 1080
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
#endif
  } else if (is_custom_device_tensor) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), tensor.place(),
        tensor_buf_ptr, copy_bytes,
        reinterpret_cast<const platform::CustomDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with CustomPlace "
        "support."));
1109
#endif
1110 1111 1112
  }
  PADDLE_THROW(platform::errors::Unimplemented("Place is not supported"));
  return py::array();
1113 1114
}

1115 1116
}  // namespace pybind
}  // namespace paddle